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Abstract

Water management in polymer electrolyte membrane fuel cells (PEMFCs)

is one of the most challenging issues affecting PEMFC efficiency and life-

time. The unavailability of reliably liquid water saturation sensors hinders

the applicability of liquid water active control and supervision techniques.

A promising technique that can be applied in this context are high-gain ob-

servers. However, the performance of this type of observer is significantly

limited by the peaking phenomena and its noise sensibility. In general, this

performance is not adequate for the considered estimation problem. For this

reason, this work proposes a new high-gain observer without peaking and

with reduced noise sensibility. The convergence of the observer is proven

through rigorous arguments. Moreover, the algorithm is shown to be appli-

cable in PEMFC systems through numerical simulations and experimental

validation. It is shown that the proposed approach achieves at least a reduc-

tion of 32.3% of the mean square error in the estimation while maintaining

the convergence rate and robustness of classical high-gain observers.
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Liquid water saturation

1. Introducción

In the current context of climate crisis, hydrogen has been established

as a very promising element due to its high energy density, low to zero car-

bon emissions and zero production of particulates or nitrogen oxides. The

deployment of hydrogen in the energy market requires developing and im-

plementing hydrogen-based solutions in the transport sector and stationary

back-up power generation field [1]. In these applications, an encouraging

device are fuel cells. A hydrogen fuel cell is an electrochemical device that

converts the chemical energy of hydrogen into direct current. Within all the

different types of fuel cells, a remarkable one is the polymer electrolyte mem-

brane fuel cell (PEMFC), by virtue of its high power density, low operating

temperature and relatively easy construction.

PEMFCs consist of a solid polymer that is used as an electrolyte between

the anode and the cathode. The fuel cell’s anode is constantly delivered with

pure hydrogen. This hydrogen is processed at a platinum based catalyst

layer, which separates the H2 into protons and electrons. The protons travel

to the cathode catalyst layer through the membrane. However, due to the

membrane ionic properties, the electrons are forced to travel through an

external circuit, which generates the electrical load of the device. In parallel,

the cathode is feed with pure oxygen or air, which flows to the cathode

catalyst layer (CCL). In the CCL, the oxygen is combined with the protons
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to generate water and heat, which closes the overall reaction. Figure 1 depicts

a schematic of the PEM fuel cell operation.

Efficiency, reliability and life-time concerns hinders the implementation

of PEMFCs in the energy market [2]. In the transport sector, variable vehicle

operating conditions, as dynamic loads, starts-stops and idle speed, between

others, accounts for the 50% of the fuel cell life-time reduction [3]. For

this reason, optimal fuel cell operation requires the design of active control

algorithms that can manage the internal variables during dynamic fuel cell

operation.

A crucial topic in this manner is internal water management. Due to

its proton conductivity and mechanical properties, the most used type of

membrane is the perfluorosulfonic acid polymer membrane, being the most

famous one the Nafion [4]. However, this type of membrane only presents ac-

ceptable proton conductivity under proper hydration [4]. As a consequence,

if the membrane is drying out, the transport resistance is increased, which

increases the ohmic resistance and accelerates membrane degradation [5].

External humidification is required in order to achieve adequate membrane

hydration [6]. However, PEMFC humidifiers are characterized by slow dy-

namic response. Thus, external humidification can easily lead to excessive

water accumulation due to the oxygen reduction reaction, which condenses

in the cathode electrode. The presence of liquid water hinders the transport

of oxygen through the electrode, which may lead to oxygen starvation and

PEMFC degradation [7] [8].
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As a consequence, optimal PEMFC operation requires developing active

water management techniques that can avoid water accumulation. A useful

variable to quantify the amount of water in the PEMFCs is the liquid water

saturation in the porous media, s, [9] [10] [11] [12]. Liquid saturation is

defined as the volume fraction in the pores, which is directly related with the

membrane drying, oxygen starvation and channel flooding. Thus, an accurate

monitoring of s is a key step in order to detect and prevent these adverse

phenomena. Nevertheless, sensing the value of this variable is a conflictive

topic. Direct visualizing/estimating techniques as the current distribution

method [13], neutron radiography [14] or x-ray radiography [15], are far too

expensive, slow and intrusive to be a viable option for the embedded feedback

loops required in active water management. Non-intrusive methods as the

pressure drop algorithm [16] [17] or external humidity sensors only retrieves

information about the presence of liquid water in the channels, but cannot

directly measure the water in the porous media.

Due to the absence of sensors, a natural approach is to implement a

state observer. Initially, some authors studied the application of linear Lu-

enberger observers [18] [19]. The resulting algorithms are simple and easy to

implement, but are based on linearizing the dynamics of the fuel cell model,

which results in a local solution to the problem. To overcome the local lim-

itation, it is crucial to implement nonlinear observers. Following this line,

other authors estimated the liquid water saturation through an unscented

Kalman filter [20]. Theoretically, the resulting observer is not local, but its
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convergence is difficult to prove and is sensitive to a correct modelling of the

noise covariance. Alternatively, some authors studied the implementation of

high-order sliding mode observers [21], which have shown to be insensitive to

certain model uncertainty and give finite time convergence of the estimation

error. Following the line of higher-order differentiators, another promising

technique is the high-gain observer (HGO) [22]. This type of observer is ro-

bust to the same type of uncertainty which high-order sliding mode observers

are insensitive. Moreover, the HGO is related to the semi-global separation

principle [23], which allows not only to separate the observer design from the

control one, but to recover the transient performance obtained from output

feedback. This property is the base of powerful nonlinear control techniques

as: output stabilization techniques [24], output regulation [25], and robust

feedback-linearization methods [26], between others. These techniques can

potentially improve the performance and robustness of active water manage-

ment systems.

Nonetheless, HGO presents some drawbacks to be considered, that is, sen-

sor noise sensibility and the peaking phenomena. Due to these drawbacks, in

most cases, the HGO performance is not adequate for PEMFC systems, thus,

this technique is usually discarded as a viable solution [27]. For this reason,

this work proposes a new HGO scheme that can overcome the limitations of

classic HGO. First, the peaking phenomena is eliminated by implementing

a low-power peaking-free high-gain observer [28]. Second, the noise sensi-

bility is reduced by introducing dynamic dead-zones in the observer cascade
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structure [29][30].

The main contributions of this work can be summarized as follows.

• Propose a new observer that combines the low-power peaking-free ar-

chitecture in [28] with the dynamic dead-zone filtering proposed in [29].

The new architecture eliminates the peaking phenomena of the classic

HGO and reduces its noise sensitivity.

• Implement the proposed observer in a PEMFC model to estimate the

liquid water saturation in the CCL from easy to measure signals.

• Compare the new observer with the classic HGO through a set of nu-

merical simulations where sensor noise and initial conditions are con-

sidered.

• Validate the proposal in an experimental prototype considering an

open-cathode PEM fuel cell.

The remaining of this paper is organized as follows: in section 2 the

observer architecture is presented; section 3 presents the PEMFC model;

section 4 implements the observer in the PEMFC model; section 5 validates

the observer through a numerical simulation and shows the benefits over the

classic HGO; section 6 validates the observer in a real experimental set-up;

section 7 draws some conclusions.
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2. Low-power peaking-free dead-zone observer

2.1. Classic high-gain observer

Let’s consider a nonlinear single-output system in the so-called phase-

variable form [31]

ẋi = xi+1, i = 1, ..., n− 1

ẋn = φ(x,d), (1)

y = x1 + v

where x = [x1, .., xn]> ∈ Rn is the state, y is the measured output, d ∈ Rq is

any bounded unknown signal which may represent parametric uncertainties

in the function φ(·, ·) or unknown disturbances and v is unknown bounded

high-frequency measurement noise. Moreover, it is assumed that x ∈ X and

d ∈ D, where X and D are compact sets of Rn and Rd, respectively. Finally,

φ(·, ·) is a known Lipschitz function with Lφ as the Lipschitz constant,

‖φ(ξ,d)− φ(z,d)‖ ≤ Lφ‖ξ − z‖. (2)

Remark 2.1. For simplicity, this section focuses in phase-variable forms,

which is a common structure for mechanical and electrochemical systems.

However, high-gain techniques can also be implemented to strict-feedback

form systems [32], non-strict feedback form systems [31], general triangular

forms [33] and systems which can be transformed to the previous mentioned
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forms by an appropriate coordinate change [34].

The classic high-gain observer for systems of the form (1) is a copy of the

system plus an output estimation error injection term

˙̂xi = x̂i+1 +
αi
εi

(y − x̂1), i = 1, ..., n− 1

˙̂xn = φ(x̂, 0) +
αn
εn

(y − x̂1) (3)

where x̂ is the estimation of the state x, ε is the design high-gain parame-

ter and α1, ..., αn are design parameters that are tuned so as the following

polynomial

sn + α1sn−1 + · · ·+ αn−1s + αn (4)

is Hurwitz.

Then, the high-gain’s observer estimation error, x − x̂, converges to a

bounded region, provided that the design parameter ε is low enough (i.e. the

gain factor
1

ε
is high enough). This fact can be summarized in the following

theorem.

Theorem 2.1. 1[22] Consider that the parameters αi are such that (4) is

Hurwitz. Then, there is a symmetric positive definite matrix P solution of

PAcl + A>clP = −I (5)

1The proof of all the theorems has been included as an appendix.
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where

Acl =



−α1 1 0 · · · 0

−α2 0 1 · · · 0

...
... 0

. . .
...

−αn−1 0 · · · 1

−αn 0 0 · · · 0


.

Then, for all ε ≤ min{ 1

2Lφ‖P‖
, 1}, the estimation error of the observer (3)

satisfies the following bound for all t > 0

|xi−x̂i| ≤
k1

εi−1
e
−

k2

ε
t
|xi(0)−x̂i(0)|+εn+1−ik2M+

k4

εi−1
‖v‖∞, i = 1, ..., n (6)

where k1, ..., k4 are some positive constants, M is a positive constant propor-

tional to ‖φ(x,d)− φ(x, 0)‖ and ‖ · ‖∞ is the maximum value of the norm.

By direct inspection of the estimation error bound (6) it is possible to

highlight the main benefits and potential drawbacks of high-gain observation.

On the one hand, the first term,
k1

εi−1
e
−

k2

ε
t
|xi(0) − x̂i(0)|, converges to

zero with a rate proportional to
1

ε
. Therefore, in the absence of noise and un-

certainty (i.e. M = ‖v‖∞ = 0), the estimation error converges to zero and its

rate of convergence can be made arbitrary fast by decreasing ε. The second

term, εn+1−ik2M , depicts the effect of unknown disturbances or uncertainty

in the estimation error. Roughly speaking, in the absence of measurement

noise (i.e. M 6= 0, ‖v‖∞ = 0) the estimation error converges to a bounded
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region proportional to the amount of model uncertainty, which can be ar-

bitrary reduced by decreasing the design parameter ε. It is possible to see

that the high-gain observer can be made arbitrary fast and robust by just

decreasing a singular design parameter, ε.

On the other hand, it should be noticed that the first term is multiplied

by a factor
1

εi−1
, which does not alter the decay rate of the term, but sig-

nificantly increases its value at initial time instants. As a consequence, the

observer’s states “peaks” during the transient, and the amplitude of this peak

is increased as the design parameter ε is decreased. Therefore, the smaller is

the desired observer decay rate, the larger the peaking will be. This abrupt

increase/decrease of the observer’s states, known as the peaking phenomena,

can have disastrous effects on the observer application, and has to be dealt

with caution. Finally, the third element of (6),
k4

εi−1
‖v‖∞, depicts that, in the

absence of uncertainty or unknown disturbances (i.e. M = 0), the estima-

tion error converges to a bounded region proportional to the noise supremum

norm, ‖v‖∞. Notice that the bound of this region is also proportional to
1

εi−1
.

As a consequence, in the presence of noise, the accuracy of the observer is

significantly deteriorated as the design parameter ε is decreased.

As a summary, there is a clear trade-off during the design of a HGO.

The appealing property of fast and robust estimation, that is achieved by

decreasing the parameter ε, comes with an increase of the peaking phenomena

and an increase of the observer’s measurement noise sensibility. This trade-off

limits the viable robustness and convergence rate of the observer. Therefore,
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with the aim of improving the performance of the HGO, next subsections

will focus on eliminating the peaking phenomena and reducing the noise

sensibility.

2.2. Peaking Phenomena Reduction: Low-power Peaking-free Observer

Different schemes can be found in the literature in order to address the

peaking phenomena. The initial efforts focused on modifying the observer

dynamics in order to bound its states to a prescribed set. Some notable

examples are the use of projection algorithms [35], the implementation of

hybrid instantaneous jumps [36] or modify the observer under some convex-

ity assumptions [37]. Although the presented results reduced the peaking

phenomena, the high-gain observer’s dynamics were significantly modified

and its implementation in feedback loops was not trivial. Another strategy

was based on interconnecting a cascade of reduced high-gain observers of

order 1 and including saturations between cascaded observers [38]. It was a

promising result, as a similar strategy, without feedback interconnection, was

shown to be applicable in output feedback control [39]. However, the estima-

tion error was only proven to converge to a bounded region. The extension of

these results lead to the creation of the low-power peaking-free observer [28].

This new observer structure presented the outstanding results of eliminating

the peaking phenomena in all its states, improving the observer’s sensibility

to noise and preserving the classic high-gain performance. This subsection

will focus on presenting the design highlights of the low-power peaking-free
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observer. It should be remarked that the results presented in this subsection

are just a brief summary of the results already presented in [28].

The low-power peaking-free observer scheme is based on interconnecting

n−1 blocks of dimension 2, characterized by the states (x̂i, ηi), which provides

an estimation of (xi, xi+1), i = 1, ..., n − 1, respectively. The n − 1 second

order systems are connected with a one dimensional block which provides

an estimation of xn. The observer includes n − 1 ”virtual states”, ηi , i =

2, ..., n − 1, which provide a redundant estimation of xi, i = 2, ..., n. The

peaking-free idea is to saturate the virtual states, η, in a way that the state

estimation error, x − x̂, is continuous, differentiable and is upper bounded

by a constant independent of ε. Specifically, for phase-variable systems (1),

the observer takes the following form

˙̂xi = ηi +
αi
ε

ei, i = 1, ..., n− 1 (7)

˙̂xn = φ(x̂, 0) +
αn
ε

en

η̇i = satri+2
(ηi+1) +

βi
ε2

ei, i = 1, ..., n− 2

η̇n−1 = φ(x̂, 0) +
βn−1

ε2
en−1

with

e1 , y − x̂1,

ei , satri(ηi−1)− x̂i, i = 2, ..., n
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where x̂ = [x̂1, ..., x̂n]> ∈ Rn is the estimation of x, η = [η1, ..., ηn−1]> ∈ Rn−1

is the virtual state, α = [α1, ..., αn]> ∈ Rn and β = [β1, ..., βn]> ∈ Rn−1 are

positive design parameters, ε is the design high-gain parameter and satk(·)

is a saturation function to be designed which satisfies

satk(s) = s ∀|s| ≤ k, satk(s) = k ∀|s| ≥ k. (8)

To ease the understanding of equation (7), it is convenient to implement

the observer in a simple example.

Example: Consider a second order system, i.e. n = 2, in phase-variable

form (1). Then, the observer in (7) would take the following form:

˙̂x1 = η1 +
α1

ε
e1,

˙̂x2 = φ(x̂, 0) +
α2

ε
e2

η̇1 = φ(x̂, 0) +
β1

ε2
e1.

The parameter design in this new observer is more convoluted than in the

classical high-gain observer and requires the definition of some extra matrices

[28]. Define the following

Bk ,

0i−k,1

1

 ∈ Ri×1 ∀k ∈ N, Ei ,

−αi 0

−βi 0

 ∈ R2i×21, i = 1, ..., n−1.
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Next, let Mn ∈ R(2n−1)×(2n−1) be a matrix recursively constructed as follows

M1 , E1,

Mi ,


Mi−1 B2(i−1)B

>
2αi

βi

B>2(i−1) Ei

 i = 2, ..., n− 1,

Mn ,

 Mn−1 0

αnB
>
2(i−1) −αn

 .
Finally, let Λi(s) : [0, 1]→ R2i×2i, i = 1, ..., n be a continuous matrices defined

as

Λ1(s) , M1,

Λi(s) ,


Mi−1 sB2(i−1)B

>
2αi

βi

B>2(i−1) Ei

 i = 2, ..., n− 1,

Λn(s) , Mn

Now, after defining these matrices, it is possible to summarize the low-power

peaking-free observer design and performance properties in the following the-

orem.

Theorem 2.2. [28] Design ri of the saturation functions as ri , maxx∈X |xi| for i =

1, ..., n. Moreover design αi, i = 1, ..., n and βi, i = 1, .., n− 1 such that there
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exists Pi = P>i > 0 and µi > 0 that satisfy the following [28]:

PiΛi(s) + Λi(s)
>Pi ≤ µiI for i = 1, ...n, ∀s ∈ [0, 1]. (9)

Then, provided that ‖v‖∞ is small enough, there exists a value ε∗ such that

for all ε ≤ min{ε∗, 1} the estimation error of the observer (7) satisfies the

following bound

|xi− x̂i| ≤ min{ k1

εi−1
e
−

k2

ε
t
|xi(0)− x̂i(0)|+ εn+1−ik2M +

k4

εi−1
‖v‖∞, p̄i} (10)

where k1, ..., k4 are some positive constants (different from the ones in (6))

and p̄i is a positive constant independent from ε.

Remark 2.2. Condition (9) may seem very restrictive and convoluted to

compute. However, it is always possible to find some parameters αi and βi

that makes the matrix inequality feasible. Moreover, a methodology to design

αi and βi is presented in [40].

The benefits of this observer structure can be seen by direct comparison

of the bound (6) with the bound (10). First, in the absence of noise and

uncertainty (i.e. d = ‖v‖∞ = 0), the estimation error converges to zero

with a decay rate proportional to
1

ε
. In the presence of uncertainty, the

estimation error converges to a bounded region that can be made arbitrary

small by reducing ε. Therefore, the observer maintains the decay rate and

robustness performance of the classic high-gain observer.
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Second, by inspection of (10), it is possible to see that

‖xi − x̂i‖ ≤ p̄i, i = 1, ..., n

where p̄i is independent from ε.

Thus, decreasing ε does not induce any peak in the observer’s states and

the peaking phenomena of the classic high-gain observer is practically solved.

Nevertheless, the noise sensibility conflict of high-gain observation has not

been addressed. Although, the extra states, η, of the low-power peaking-free

observer act as low pass filters and reduces the noise sensibility of the system

[28], the measurement noise still propagates through the observer and gets

multiplied by a factor
1

εi−1
in the estimation error bound (10). Moreover,

if too much noise is present in the measured output, the virtual states, ηi,

will enter and never exit the saturation function, satri(·), which breaks the

observer’s convergence proof [28]. For this reason, the next section will focus

on introducing some tools that can be used to reduce the noise sensibility of

the observer without degrading the observer performance. Moreover, a novel

observer will be presented.

2.3. Noise Sensibility Reduction: Dynamic dead-zone filtering

In general, measurement noise is limited to the high-frequency spectrum.

For this reason, it is common to apply a low-pass filter that filters out the

high-frequency components of the measured output. However, the effective-

ness of the filter relies on increasing its time constant, which significantly
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slows down the estimation of the observer or, in the worst case, makes the

observer lose its exponential convergence [41]. For this reason, some authors

have focused on alternative ways of reducing the noise sensibility.

In recent years, some authors have studied the use of nonlinear dynamical

filters with the aim of maintaining the filtering capabilities of low-pass filters

without deteriorating the observer performance. A promising result is the

use of dynamic dead-zones in the output-injection term [29][30][42][43]. The

idea is to substitute the term y− x̂1 of (3) or (7) by a “deadzonated” version,

dz√σ(y − x̂1), where dz√σ(·) is the dead-zone function computed as

dz√σ(a) = a− sat√σ(a), (11)

where the factor
√
σ is the dead-zone amplitude (see Figure 2 for an example

of different dead-zone functions with different amplitudes).

The motivation behind this modification is that the dead-zone function is

capable of eliminating part of the persistent sensor noise. Notice that the ob-

server’s error dynamics runs in open-loop around zero, which may destabilize

the observer. For this reason, the dead-zone amplitude,
√
σ, is dynamically

adapted to the amount of noise. By applying this modification, in the ab-

sence of measurement noise, the observer maintains asymptotic convergence

to zero , and, in the presence of noise, the observer converges to an ultimate

bound lower than its original non-dead-zone version.

This section proposes combining the low-power peaking-free observer (7)
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with the dynamic dead-zone strategy, in order to reduce the noise introduced

to the observer and its propagation through the cascade structure. Specifi-

cally, for phase-variable systems (1), the observer takes the following form

˙̂xi = ηi +
αi
ε

dz√σi(ei), i = 1, ..., n− 1 (12)

˙̂xn = φ(x̂, 0) +
αn
ε

dz√σn(en)

η̇i = satri+2
(ηi+1) +

βi
ε2

dz√σi(ei), i = 1, ..., n− 2

η̇n−1 = φ(x̂, 0) +
βn−1

ε2
dz√σn−1(en−1)

σ̇i = −qi
ε2
σi + piε‖ei‖, i = 1, ..., n (13)

with

e1 , y − x̂1,

ei , satri(ηi−1)− x̂i, i = 2, ..., n

where dz√σi(·) is the dynamic dead-zone defined in (11),
√
σ is the amplitude

of the dead-zone, qi and pi are some positive design parameters. The rest of

parameters are introduced in (7).

This observer is the same as (7) but, the error signals e1, e2, ..., en are

filtered through dynamic dead-zones. The amplitude of the dead-zones are

modified according to the dynamics of (13).

Theorem 2.3. Consider the low-power peaking-free observer with dynamic
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dead-zone modification (12) and assume that αi and βi for i = 1, ..., n satisfy

(9). Then, for a fixed pi > 0 for i = 1, ..., n there exist some values ε∗ > 0

and q∗ > 0 such that, for ε < ε∗ and qi > q∗ for i = 1, ..., n, the observer

estimation error, xi − x̂i, converges to an ultimate bound proportional to

1

εi−1
‖v‖∞, provided that ‖v‖∞ is small enough.

Remark 2.3. The amount of noise that is introduced and propagated through

the observer is significantly reduced by the dead-zone modification. However,

the estimation error’s ultimate bound remains proportional to
1

εi−1
. There-

fore, the observer high-gain parameter, ε, still has to be designed with caution.

Remark 2.4. The idea of combining dynamic dead-zones with low-power ob-

servers was proposed in [30], with some major differences. First, the observer

does not include saturation functions. Therefore, it is sensible to the peak-

ing phenomena. Second, it only applies the dynamic dead-zone to the signal

e1. As a consequence, the dead-zone modification only reduces the amount of

noise that enters the observer, but not the one that propagates through the

cascade structure.

3. Open-cathode PEM Fuel Cell Model

This work will focus on a lumped parameter model developed by Strahl

et. al. [44], which has demonstrated to be descriptive enough for fuel cell

control design [45]. The model depicts the behaviour of the fuel cell through

3 sub-models: a thermal sub-model, a liquid water transport sub-model and

an electrochemical sub-model.
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Relative to the thermal sub-model, the system is considered to have a

uniform temperature Tfc, the dynamics of which are depicted by

Ṫfc = K1(1.48ncell − Vfc)I + K2(Tamb − Tfc)vair,

where ncell is the number of cells in the stack, Vfc is the fuel cell stack

voltage, I is the exchange current, Tamb is the ambient temperature, vair is

the cathode air velocity, K1 and K2 are some parameters computed as

K1 =
1

mfcCp,fc

, K2 =
ρairAinletCp,air

mfcCp,fc

where mfc is the stack’s mass, Cp,fc is the specific heat capacity, ρair is the air

density, Ainlet is the inlet cross-sectional area, Cp,air is the air heat capacity.

The dynamics of the liquid water saturation, s, are characterized through

the following expression

ṡ =
1

Ks

(K3I−K4(p0e−Ea/(kbTfc) − pv)s)−K5s4(1.42− 4.24s + 3.79s2)

where Ks is the liquid water accumulation coefficient, p0 is a pre-exponential

factor, kB is the Boltzmann’s constant and Ea is the activation energy of the

evaporation process.

The parameters K3, K4 and K5 are computed as

K3 =
1

2FAgeoMH2O

, K4 = Kevap
MH2O

RTfcApore

,K5 = σw cos Θ
√
εeffKeff

ρl
Ksµl
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where F is the Faraday’s constant, Ageo is the CCL’s surface area, MH2O

is the water molar mass, Kevap is the evaporation time constant, Apore is

the pore surface per unit volume, R is the ideal gas constant, σw is water’s

surface tension, Θ is the effective contact angle in the diffusive media, εeff

is the CCl’s effective porosity, Keff is the CCL’s effective permeability, ρl is

the water density, µl is the liquid water viscosity.

Finally, the model includes a static relation between the fuel cell stack

temperature, Tfc, liquid water saturation, s, and the stack voltage, Vfc,

Vfc = ncell

(
Eth −

RTfc

nαF
ln

(
j

j0

)
− RohmI

)
(14)

where Eth the theoretical potential obtained through the Nernst equation

[46], j is the exchange current density, α is the transfer coefficient, n is the

number of electrons transferred in the reaction, Rohm accounts for the ionic

conductivity of the membrane and the resistance of the fuel cell’s electric

conductive components and j0 is the reference exchange current density which

computed as

j0 = 0.21jref0 ac

(
1−

(sopt − s

sopt

)1/3
)

e(−∆G∗/(RTfc)(1−(Tfc/Tref )))

where jref0 , ac and Tref are the reference exchange current, electrode rugos-

ity and stack temperature, respectively, at a reference operating conditions;

∆G∗ is the activation energy of the oxygen reduction reaction and sopt is the

liquid water saturation in which the effective electrochemical active area is

21



maximum.

The value of all the model parameters and constants is included in Ap-

pendix Appendix D.

In order to ease the read of the following sections, the PEMFC model will

be rewritten in the following state-space form

ẋ = fs(x, I) + g(x)vair. (15)

The state vector x, is,

x =

Tfc

s


and fs, g are,

fs(x, I) =

 K1(1.48ncell − Vfc(x))I

1

Ks

(K3I−K4fp(x1)x2)−K5fd(x2)



g(x) =

K2(Tamb − x1)

0


Finally, the measured output of the system, y, is the fuel cell stack tem-

perature, y = x1 = Tfc.
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4. Main result

In this section, the low-power peaking-free observer with dynamic dead-

zone filtering will be implemented in the PEMFC model.

4.1. Observability analysis

Nonlinear systems do not have a unified observability analysis and mul-

tiple observability assumptions can be taken into account depending on the

observer to be designed [33]. In this section we are going to focus on the

observability rank condition [47]. The observability rank test is a nonlinear

extension of the Kalman rank condition, and shows if it is possible to re-

construct the system states through the knowledge of the measured output,

input and a finite number of its derivatives. The observability rank condition,

under some structural assumptions, is a sufficient condition for the existence

of a high-gain observer.

Definition 4.1. Consider a generic nonlinear system

ẋ = f(x,u) (16)

y = h(x) (17)

where x ∈ Rn is the state vector, u ∈ Rq the input vector and y ∈ R is

the output vector. Moreover, f ∈ Rn×(n+q) and h ∈ R are vector functions,

potentially nonlinear.
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Let the observability map of order k of a generic nonlinear system be

defined as

Ok =



y

ẏ

...

y(k)


. (18)

Then, system (16) is rank observable of order k if the following holds

rank

(
∂Ok

∂x

)
= n. (19)

Let’s study the rank condition in the concerned PEMFC model. Consider

the observability map of order 2 for system (15),

O2 =

y

ẏ

 =

 Tfc

K1(Ethncell − Vfc)I + K2(Tamb − Tfc)vair


The Jacobian of the observability map satisfies

∂O2

∂x
=

 1 0

∂LfsTfc

∂Tfc

(x)−K2vair
∂LfsTfc

∂s
(x)

 (20)
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where

∂LfsTfc

∂Tfc

(x) = −K1
R

nαF
I

(
∆G∗

RTfc

− ln
(

I

Ageoj0

))
∂LfsTfc

∂s
(x) =

−K1RTfcI

3nαF

(
1−

(
sopt − s

sopt

)1/3)(
sopt − s

sopt

)2/3

sopt

The Jacobian (20) is full rank in the domain

D = {Tfc, s, I ∈ R : Tfc 6= 0; 0 < s < sopt; I 6= 0} (21)

The operating conditions Tfc = 0, s = 0 and/or s = sopt are physically

impossible. Moreover, during normal operation of the fuel cell, the current is

always greater than zero. Therefore, the Jacobian (20) is full rank in all the

valid operating conditions of the fuel cell and the system is rank observable

[47] independently of the input.

From this result, one can extract two conclusions. First, the unknown

states can be uniquely expressed as a function of y, ẏ, I. Second, the system is

observable for any input, vair, i.e., is uniformly observable in the air velocity.

Remark 4.1. Even though the values s = 0 and s = sopt are physically un-

reachable, if the observer estimation peaks excessively during the transient,

the observer’s states may reach these values, making the system unobserv-

able. For this reason, it is crucial to minimize the peaking phenomena of the

observer or eliminate it through a peaking-free structure.
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4.2. System Transformation

The low-power peaking-free observer can only be implemented in phase

variable forms or similar triangular structures [33]. The studied fuel cell sys-

tem (15) does not present a triangular structure, thus, the observer cannot

be implemented directly on the system. However, it is possible to trans-

form the system to a triangular structure through an appropriate coordinate

change [34]. From the past observability analysis, it was concluded that the

system is rank observable and uniformly observable in the inputs. There-

fore, an adequate coordinate transformation can be obtained by following

the methodology presented in [32].

Consider system (15) and define the map

T(x, I) =

 Tfc

K1(Ethncell − Vfc)I

 , ξ, (22)

which, as the Jacobian of (22) is full rank in the fuel cell operating region

(21), is a diffeomorphism.

The map (22) is an invertible coordinate change that transforms system

(15) to the following triangular form [32]

ξ̇ = Aξ + Ψ(ξ,u), (23)

y = cξ (24)
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where

A =

0 1

0 0

 ; c =

1

0


>

(25)

Ψ(ξ,u) =

 ψ1(ξ1,u)

ψ2(ξ,u, İ)

 (26)

and the functions ψ1 and ψ2 are Lipschitz.

The triangular structure (23) is not the phase variable form studied in

the past sections. However, as it will be shown in the next section, the low-

power observer can be implemented in this form with minor changes in the

observer structure.

Remark 4.2. Notice that the function ψ2 depends on the derivative of the

current, İ, which is not directly measured. Nevertheless, there are multiple

ways to deal with this problem. In some types of control, one has access to

the derivatives of the input, e.g. backstepping control or higher-order sliding

mode control, between others. Therefore, the derivative of the input is not

measured, but known. Alternatively, one can estimate its value through robust

differentiators [48] and deal with the discrepancy by increasing the high-gain

design parameter.

4.3. Observer Equations

The states of the fuel cell model (15) are going to be estimated through the

proposed low-power peaking-free observer with dynamic dead-zone filtering
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(12), which can be directed implemented in the triangular form (23) as follows

˙̂
ξ1 = η1 + ψ1(ξ̂1,u) +

α1

ε
dz√σ1(e1) (27)

˙̂
ξ2 = ψ2(ξ̂,u, 0) +

α2

ε
dz√σ2(e2)

η̇1 = ψ2(ξ̂,u, 0) +
β1

ε2
dz√σ1(e1)

σ̇i = −qi
ε2
σi + piε‖ei‖, i = 1, 2

with

e1 , y − ξ̂1,

e2 , satr2(η1)− ξ̂2.

In this work, it is assumed that there is no information about the deriva-

tive of the current, İ. Thus, the nonlinear function ψ2 is implemented with

İ = 0. This approximation will introduce some bias in the estimation. How-

ever, the bias can be reduced by decreasing the parameter ε.

Finally, in order to recover the states in the original coordinates, it is

necessary to invert the transformation (22), i.e. find a function T−1(ξ, I)

such that

x = T−1(ξ, I) (28)

which is always possible as the system is observable and the map (22) is a

diffeomorphism.
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The proposed observer tuning process and the main observer loop have

been summarized in a flowchart, see Figure 3.

5. Numerical simulations

The proposed observer scheme has been validated through a numerical

simulation in Simulink 9.1 of Matlab 2018a in a computer with an i7–8700K

processor and 16 GB of RAM. In the simulation, the model (15) is going to

be excited with changes in the current signal, I (Figure 4), which will induce

a stack temperature profile, Tfc, that will be used by the proposed observer

scheme in order to estimate the liquid water saturation, s.

From the observer point of view, it is assumed that there is no prior infor-

mation of the unknown states. Therefore, the state estimation is initialized

at an arbitrary feasible operating condition T̂fc = 300 and ŝ = 0.01.

In order to stabilize the temperature of the system, the air velocity will

be controlled by a proportional integral anti-windup structure (PI+AW) [45].

The proposed observer is not used in this control scheme, consequently, this

section does not focus in its design. Moreover, the generated temperature

profile is corrupted with random high-frequency noise with realistic variance

values, see Figure 6. Notice that the temperature dynamics are mostly hidden

by the sensor’s noise, which is very common in electrochemical systems. In

Figure 5, it is depicted the general scheme of the simulation.

To show the benefits of the proposed observer structure. The estimation

of the low-power peaking-free dead-zone observer will be compared with the
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estimation of a classic high-gain observer with similar convergence rate. The

parameter of the classic high-gain observer are α1 = 0.102, α2 = 0.0002 and

ε = 0.055. The low-power peaking-free dead-zone observer design parameters

are summarized in the Table 2. In Figure 7 it is depicted the evolution of

the model’s true liquid water saturation, the classic HGO’s estimation and

the low-power peaking-free dead-zone observer’s estimation.

In both observers, the estimation error converges to a relative error2 be-

low 5%, within the first 150 seconds, which is an acceptable convergence rate

as, in general, the water dynamics of PEMFCs requires around 1000 seconds

to reach a steady-state [5]. The convergence rate of both observers is nearly

identical. During the steady-state, the observer estimation oscillates as a con-

sequence of the high-frequency noise in the temperature signal. Nonetheless,

the persistent estimation error induced by the noise is significantly reduced

in the low-power peaking-free dead-zone observer. In order to quantify this

improvement, the mean square error (MSE) of the liquid water saturation

estimation has been computed,

MSE =
1

n

n∑
1

(s(i)− ŝ(i))2,

with a sampling time of 0.1 s.

The implementation of the low-power peaking-free dead-zone observer

2The relative error [%] between x and x̂ is computed as
‖x− x̂‖

x
· 100
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has resulted in a reduction of 32.3% of the MSE. Similar reduction of the

MSE could have been achieved by increasing the value of ε or by filtering the

temperature signal through a low-pass filter. However, in the former case,

the robustness and convergence rate of the observer would be significantly

reduced. In the latter, the convergence rate would be significantly affected.

The presented simulation serves as an example of the amount of noise

reduction that can be expected from the proposed scheme. Furthermore,

additional simulations have been conducted to assess the validity of the MSE

error reduction in different case scenarios. In particular, the MSE reduction

has been analysed for a set of different initial conditions for the fuel cell

model and for a set of different sensor noise value.

For the case of different initial conditions on the fuel cell plant, the results

are depicted in Figure 8 a). It can be observed that, in all cases, the proposed

observer outperforms the classic HGO with at least a 36% MSE reduction.

Moreover, a clear tendency can be seen that shows a further MSE reduc-

tion for large values of the temperature and low values of the liquid water

saturation. This tendency can be explained by the fact that fuel cell initial

conditions with large temperature values and low liquid water saturation will

naturally converge to low liquid water saturation values. In such cases, the

effect of the liquid water on the temperature dynamics is reduced, which, as

a consequence, increases the noise sensitivity of the observer. Consequently,

the significance of having filtering elements as the dynamic dead-zone filter

drastically increases, which explains the result.
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For the case of different values of noise power, the results are depicted

in Figure 8 b). It should be remarked that the data is for the observer in

steady-state. It can be seen that the MSE reduction of the proposed observer

increases with the noise power. This result validates the usefulness of the

technique in scenarios with very noisy sensors.

Moreover, some of these simulations validates the benefits of having a

peaking-free property. An example is depicted in Figure 9. It can be seen

that the classic high-gain observer drastically peaks during the transient,

while the proposed observer does not present any peaking and presents a

simpler transient behaviour.

In summary, this numerical simulation shows that the proposed observer

reduces the noise sensibility of the classic HGO without influencing the per-

formance in terms of convergence rate and robustness. Moreover, the pro-

posed observer also presents the benefit of eliminating the peaking phenom-

ena.

6. Experimental Validation

Last section validated the proposed observer in a numerical simulation

where the observer is capable of accurately estimating the models states in

a noisy environment. However, one cannot expect the “simulated” model

to depict all the details and dynamics of the true real system. As a con-

sequence, some conflicts may arise during the real implementation of the

observer. For this reason, it is crucial to validate the proposed strategy in a
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real experimental set-up, which will be the focus of this section.

6.1. Experimental Set-up

The considered PEM fuel cell system is the model H-100 of Horizon fuel

cell technologies. This model presents a rated power of 100 W, 20 stacked

cells, an open-cathode architecture with an active surface of 22.5 cm2 and

an efficiency of 40% at 12 V. The fuel cell’s cathode incorporates a fan

that delivers the reactant and cools the system. In order to measure the air

velocity, a hot film sensor model EE75 of E+E Elektronik has been included

in the cathode.

The PEMFC is operated in dead-end mode [46], with a back-pressure

regulator that maintains the anode inlet pressure at 0.4 bar. This architecture

allows avoiding the need of a flow controller. Nonetheless, it is required to

periodically purge the system. Specifically, 500 ms purges in the anode are

executed at a period of 20 seconds.

The PEM fuel cell obtains the reactant from the ambient air. Conse-

quently, the operation of the system is very sensitive to the ambient condi-

tions. In order to make the experiments repeatable, the fuel cell is enclosed in

an environmental chamber that regulates the ambient temperature, relative

humidity and oxygen concentration.

The environmental chamber includes its own sensors, for ambient condi-

tions control purposes. Nevertheless, the humidity and temperature of the

ambient are measured through a sensor HMM211 from Vaisala. Moreover,
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the temperature of each cell is measured, through a type K thermocouple

pt1000. The average of all the thermocouple measurements is considered as

the stack temperature (Tfc).

The experimental set-up includes a programmable load that allows to

control the exchange current. The voltage of each individual cell is measured

through an isolation amplifier, HCPL-788J from Agilent Technologies and

the exchange current (I) through a Hall effect sensor model LTS 6 NP of

LEM. The sensors of the experimental prototype and its specifications are

summarized in Table 3.

The sensors are connected to a controller cRIO-9047 of National Instru-

ments, which is programmed in the LabView environment. The test station

presents a processor of 16 GHz, 4 GB of DRAM and a SSD of 4 GB. The

sampling time of the data acquisition is of 2 s, which is considered to be ad-

equate, as the time scales of thermal and water dynamics time are an order

of magnitude larger.

In Figure 10 it is depicted a scheme of the experimental set-up and in

Figure 11 it is depicted the environmental chamber and the H-100 PEM fuel

cell.

6.2. Methodology

The H-100 PEM fuel cell setup will be excited by a constant current of

3.8 A, and the cathode air velocity profile depicted in Figure 12.

Exciting the system with these profiles places the observer in an interest-
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ing position. On the one hand, due to the cathode air velocity’s decrease,

the fuel cell’s stack temperature is expected to increase, which will boost the

liquid water evaporation rates and overcome the generation of water due to

the reduction reaction. Consequently, the liquid water saturation, s, should

reduce during the experiment. On the other hand, the abrupt change in the

cathode air velocity will induce a fast change in the stack temperature, Tfc,

which, as a direct consequence, will significantly increase the state estimation

error during a certain time. If the observer presents the peaking phenomena,

this increase in the estimation error will be significantly aggravated and can

make the estimation practically unusable. The experiment conditions are

summarized in Table 4.

The proposed input profiles induced the temperature and voltage profiles

presented in Figure 13 and Figure 14, respectively. Notice that the mea-

sured voltage profile present some periodic downward peaks, which are the

consequence of the periodic purges of the anode due to the dead-end mode

operation [46].

The temperature profile, Figure 13, is introduced in the observer in order

to estimate on-line the liquid water saturation. The main concern in validat-

ing the proposed observer strategy is the unavailability of sensors that can

directly measure the variable, s. Consequently, the estimation generated by

the proposed technique, ŝ, cannot be contrasted with the true values, as they

are not being measured. However, there are other measured signals that can

be used to validate the estimation.
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The estimation of the stack temperature, T̂fc, the estimation of the liquid

water , ŝ, and the voltage equation (14) can be used to generate an estimation

of the stack voltage, V̂fc. If we assume that the model is accurate, the stack

voltage only depends on the stack temperature and the CCL’s liquid water

saturation. As the stack voltage and temperature are actually measured,

one can verify the accuracy of the liquid water estimation by computing the

estimation errors ‖Tfc− T̂fc‖ and ‖Vfc− V̂fc‖, i.e., if the stack temperature

and the voltage estimation are accurate, we can assume that the liquid water

estimation is also accurate.

6.3. Results

The experimental profiles of current (Figure 4), air velocity (Figure 12)

and stack temperature (Figure 13) has been introduced in the proposed ob-

server and, as a consequence, an estimation of the liquid water saturation

has been generated, Figure 15.

Notice that the estimation converges to a value around 0.1 kg m−2, in

200 seconds, which is coherent with the values obtained in the simulation,

Figure 7. Moreover, it can be seen that the liquid water saturation is slowly

decreasing. This tendency was predicted during the experiment design, as

an increase of the temperature results in a boost of the water evaporation

rates.

Notice that around second 400 and around second 2000 there are some

peaks. These peaks are the consequence of the abrupt change in the cath-
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ode’s air velocity, Figure 12, which induces a sudden change in the stack

temperature, Figure 13, and an increase of the estimation error, which af-

fects the estimation of the liquid water saturation. In the classic HGO, these

abrupt changes would be amplified due to the peaking phenomena, making

the estimation practically unusable. Indeed, a HGO with a settling time

of 200 seconds presents a peak at time 2000 seconds that exceeds sopt (see

Table 5). Therefore, the states of a classic HGO leave the domain (21) and

the system becomes unobservable, which will make the transformation (22)

not injective and the estimation of the observer unusable. Thus, the pres-

ence of the peaking phenomena makes the presented estimation problem not

solvable through a HGO. However, the presented peaking-free modification

stabilizes the estimation in less than 300 seconds and the estimation, ŝ, does

not surpass the value sopt. Therefore, the system is always observable.

Moreover, the measurement noise present in the temperature profile in-

duces some noisy oscillations in the liquid water estimation. Nevertheless,

the amplitude of the oscillations is below 1% and can be neglected. Notice,

that if a classic HGO was applied, this error would be an order of magnitude

larger, and the estimation would be practically unusable.

In order to validate the accuracy of the estimation, the measured stack

temperature profile and output voltage profile will be used. Specifically, in

Figure 16, it is depicted the measured temperature profile and the observer’s

estimation. It can be seen that, after the transient, the relative error is below

the 0.1%.
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In Figure 17 it is depicted the output voltage profile and the observer’s

estimation (computed through (14)). The estimation can be defined as accu-

rate, as the relative error converges to a value below the 0.5%. The abrupt

changes around second 400 and second 2000 are due to the changes in the

cathode air velocity, Figure 12. However, it can be seen that after the abrupt

changes, the estimation stabilizes again around the relative error 0.5%.

As the temperature and voltage estimation converges to a relative error

below the 0.5%, it can be concluded that the CCL’s liquid water saturation

estimation is accurate. Nevertheless, the voltage estimation slightly under-

shoots the true value. This discrepancy it is due to the uncertainty in the

voltage equation. Indeed, the voltage estimation, V̂fc, is achieved outside

the observer’s loop; therefore, the uncertainty’s effect is not reduced by the

observer’s feedback nature. Notice that this does not happen in the tem-

perature estimation, Figure 16. As the temperature estimation is achieved

inside the observer’s loop, even in the presence of model discrepancies, the

estimation converges to a low relative error. The liquid water saturation

estimation, ŝ, is also achieved inside the observer’s loop, so, it is expected

to be robust to the model uncertainties and more accurate than the voltage

estimation.

6.4. Feasibility of the proposed observer

The experimental implementation of the proposed scheme has shown pos-

itive results, which validates the possibility of implementing the observer in
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a real PEMFC. The base of the proposed scheme is the substitution of the

common high-gain observer with a novel low-power peaking-free dead-zone

observer. The main benefits of this substitution are a significant reduction

of the observer noise sensitivity, a diminution of 32.3% in the MSE, and the

elimination of the peaking phenomena without deteriorating the transient of

the observer and without an increase of the number of assumptions through

the observer tuning. Moreover, the proposed approach requires the same

sensors of the common HGO.

Nonetheless, the improvement comes with the cost of increasing the order

of the observer, from order 2 of the standard high-gain observer to order 5,

which increases the computation cost of the observer. It is crucial to study

if this increase compromises the technological and economical feasibility of

the proposed solution.

A method to carry on with this analysis is to compare the computational

cost of a single iteration of the high-gain observer with a single iteration

of the low-power peaking-free dead-zone observer. For this purpose, it is

convenient to discretize in time the equations of the observer. Specifically,

assume that there is an observer, the dynamics of which are depicted as:

˙̂x = g(x̂,u, y)

where g is a vector of (nonlinear) functions.

Then, one can approximately discretize the observer at a sampling time
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τs through the Euler method as:

x̂(k + 1) = x̂(k) + τsg(x̂(k),u(k), y(k)).

Consequently, to compare the computational cost of one observer to an-

other, it is sufficient to compare the computational time of the function

g(x̂(k),u(k), y(k)).

This analysis has been carried on in Matlab 2018a in a computer with

an i7–8700K processor and 16 GB of RAM, where it has been compared the

computation cost of the high-gain observer and the low-power peaking-free

observer along a realistic trajectory of the system. On the one hand, the

cost of one iteration of the high-gain observer has resulted in an average

time of 4.455 · 10−6 s (variance 5.680 · 10−12 s2). On the other, the low-

power peaking-free dead-zone observer has resulted in an average time of

5.184 · 10−6 s (variance 1.0822 · 10−12 s2), which is an increment of 16.36%.

Notice that the sampling time considered in the experimental prototype is of

2 s. Consequently, in both cases, the computational cost of the observer is

below the 3 · 10−4%, which makes the increment in the computational cost

negligible.

7. Conclusions

This work has presented a nonlinear observer for the estimation of the liq-

uid water saturation in PEMFC systems. The observer combines the ideas
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of the low-power peaking-free observer and dynamic dead-zone filtering in

order to create a new observer that out-performs the classic HGO. This new

observer could serve as a way of implementing HGO-based control algorithms

in the PEMFC active water management problem. The viability of the ob-

server has been shown through a rigorous proof, numerical simulations and

experimental validation. In the validations, it is shown a reduction of the

mean square error of 32.3% with respect to a classical high-gain observer

with similar convergence rate and robustness. Moreover, the elimination of

the peaking phenomena prevents the state estimation to drift outside the

operating region, which allows to maintain the observability of the system

and allows to implement the observer in a real experimental prototype.

Future works will focus on combining the proposed observer with an on-

line identification algorithms in order to estimate simultaneously the liquid

water saturation and unknown parameters related to the water dynamics.
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Tables

Table 1: Nomenclature and abbreviations

Symbol Definition

PEMFC variables

Tfc Stack temperature

s Cathode catalyst layer liquid water saturation

Vfc Stack voltage

I Exchange current

vair Cathode air velocity

RHamb Ambient relative humidity

Tamb Ambient temperature

PEMFC parameters

ncell Number of cells

mfc Stack mass

Cp,fc PEMFC specific heat

Ainlet Inlet cross-sectional area

Θ Effective control angle

Ks Liquid water accumulation coefficient

Ageo Cathode catalyst layer surface area

Kevap Evaporation time constant

Apore Pore surface per unit volume

εeff Cathode catalyst layer effective porosity
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Keff Cathode catalyst layer effective permeability

α Transfer coefficient

ddiff Cathode catalyst layer width

Eth Theoretical potential of a cell

Rohm PEMFC ohmic resistance

jref0 Reference exchange current

ac Electrode rugosity

Tref Reference temperature

Physical constants

ρair Air density

Cp,air Air heat capacity

p0 Pre-exponential evaporation factor

Kb Boltzmann’s constant

Ea Activation energy of the evaporation process

F Faraday’s constant

∆G∗ Activation energy of the reduction reaction

MH2O Water molar mass

R Ideal gas constant

σw Water surface tension

ρl Water density

µl Water viscosity

sopt Optimal liquid water saturation

43



Observer states

ξ̂ Observer internal states

η Observer redundant state

σ Dynamic dead-zone amplitudes

x̂ State estimation

e State estimation error

Observer parameters

α,β Observer gain coefficients

ε Observer high-gain parameter

ri Saturation function constant

qi Dynamic dead-zone time constant

pi Dynamic dead-zone steady-state gain

Abbreviations

PEMFC Polymer electrolyte membrane fuel cell

CCL Cathode catalyst layer

HGO High-gain observer

LPPFDZO Low-power peaking-free dead-zone observer

PI Proportional integral

AW Anti wind-up

MSE Mean square error
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Table 2: Low-power peaking-free dead-zone observer parameters

Parameter Value
α1 1.5
α2 0.01
β1 0.5
r1 0.16
ε 0.25
qi 3
p1 180
p2 40

Table 3: Sensors of the experimental prototype

Variable Sensor Range Bandwidth/Response time (τs) Accuracy
vair EE75 0− 2 m/s τs = 1.5 s ±0.03 m/s
RHca HMM211 0− 100% RH τs = 15 s ±2% RH
Tfc pt1000 −50− 203◦C - ±0.5◦C
Vfc HCPL-788J 0− 6 V 30 Khz ±0.6%

I LTS6NP 0− 19.2 A 100 Khz ±0.2%
Tamb HMM211 −70− 180◦C - ±0.1◦C

Table 4: Experiment conditions

Factor Value Units
Anode reactant H2 −
Cathode reactant Ambient air (21% O2) −

Tamb 25 ◦C
RHamb 75 %

Anode Pressure 0.4 Bar
Anode RH 0 %
Current 3.98 A
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Table 5: Parameters of the fuel cell model
Parameter Value Units

mfc 0.324 kg
Cp,fc 1297 Jkg−1K−1

Eth 1.085 V
ρair 1.07 kg m−3

Ainlet 8.7E − 3 m2

Cp,air 1005 Jkg−1K−1

Tamb 298 K
Ageo 0.00225 m2

Ks 0.149 kg m−2

Kevap 8.4E5 kg s−1 m−2

Apore 2.2E7 m2m−3

p0 1.196E11 Pa
Ea 0.449 eV
pv 2380 Pa
σw 0.0673 N m−1

Θ 1.5882 rad
εeff 0.536 −
Keff 9.97E − 15 m2

ρl 997 kg/m3

µl 3.587E − 4 Pa s
ddiff 4.1E − 4 m
ncell 20 −
α 0.311 −
ac 238 −

jref0 4.7E − 3 A m−2

∆G∗ 70000 J/mol
Rohm 0.33 Ω
sopt 0.165 kg m−2
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Figures

Figure 1: General scheme of a single PEM fuel cell operation.

Figure 2: Dead-zone function with σ = 4, σ = 9 and σ = 16.
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t=0

Initial observer 

conditions:

𝜉1𝜉1 𝜉2𝜉2 ,η1,σ1 σ2,

Offline Observer parameter tuning

Compute Eq. (9) for:

,

α1, α2 β1,

Fix  p1 , p2 and tune:

  *q1 > q*q1 > q *q2 > q*q2 > q, *ε < ε*ε < ε,

Predict observer states:

Eq. (27)

Solve Eq. (28) for the 

variable s

Observer loop

ss
Liquid water 

estimation

Fix r2 as:

  =max{Tfc}
.

 r2

Fuel cell

Tfc

vair

I

Figure 3: General flowchart of observer offline tuning and online implementation.

Figure 4: Current profile used to excite the simulated model.
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Figure 5: General scheme of the simulation. The PI+AW box depicts the controller
proposed in [45], the fuel cell model box depicts the model (15) with the parameters
summarized in Table 5 and the low-power power-peaking-free dead-zone observer box
depicts the proposed observer scheme.

Figure 6: Model’s measured temperature signal corrupted with Gaussian noise.
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Figure 7: Model’s liquid water saturation (yellow), HGO estimation (blue) and low-power
peaking-free dead-zone observer (LPPFDZO) estimation (orange) in presence of measure-
ment noise.
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a)

b)

Figure 8: a) MSE reduction of the proposed observer over the classic high-gain observer
with different initial conditions in the fuel cell model. b) MSE reduction of the proposed
observer with different values of noise power. The fuel cell model initial conditions on the
case b) have been fixed as Tfc = 320 and s = 0.1.

51



Figure 9: Classic HGO CCL’s liquid water saturation estimation, low-power peaking-free
dead-zone observer estimation and true value of the liquid water saturation

Figure 10: H-100 experimental set-up scheme.
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Figure 11: Environmental chamber and H-100 PEM fuel cell.

Figure 12: Implemented cathode’s air velocity.
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Figure 13: Measured stack temperature profile.

Figure 14: Measured voltage profile.
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Figure 15: Low-power peaking-free dead-zone observer CCL’s liquid water saturation es-
timation.

Figure 16: Measured stack temperature profile (blue) and adaptive observer’s estimation
(yellow).
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Figure 17: Measured output voltage profile (blue) and adaptive observer’s estimation
(yellow).
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Appendix A. Theorem 2.1 proof

This proof is a sketched version of the one presented in [22].

Define the following scaled errors

η1 =
x1 − x̂1

εn−1
, η2 =

x2 − x̂2

εn−2
, . . . , ηn = xn − x̂n. (A.1)

The dynamics of η ,

[
η1, . . . , ηn

]>
are depicted by the following expression

εη̇ = Aclη + εδ(x, x̂,d)− 1

εn−1
Ev

where

δ = col(0, . . . , 0, δn), E = [α1, ..., αn]>

and δn is

δn = φ(x,d)− φ(x̂, 0).

By means of the Lipschitz condition (2), it is possible to show that for all

ε ≤ 1

‖δ‖ ≤ Lφ‖η‖+ ‖φ(x,d) + φ(x, 0)‖ , Lφ‖η‖+M. (A.2)

Consider the positive definite and radially unbounded Lyapunov function

V = η>Pη. (A.3)
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The derivative of (A.3) satisfies the following

εV̇ = −η>η + 2εη>Pδ − 2

εn−1
η>PEv ≤ −‖η‖2 + 2εLφ‖P‖‖η‖2

+ 2ε‖P‖‖η‖M +
2

εn−1
‖PE‖‖η‖‖v‖∞ (A.4)

By inspection of the first two elements in the right hand side of (A.4), it can

be seen that for all ε ≤ 1

2Lφ‖P‖
inequality (A.4) reduces to

εV̇ ≤ −c‖η‖2 + 2ε‖P‖‖η‖M +
2

εn−1
‖PE‖‖η‖‖v‖∞,

εV̇ ≤ − c
2
‖η‖2 ∀‖η‖ ≥ 4

(
ε‖P‖‖η‖M +

1

εn−1
‖PE‖‖η‖‖v‖∞

)
where c is a positive constant dependent of ε.

As a consequence, by applying Theorem 4.5 of [49] and inverting the

coordinate change (A.1), the bound (6) can be proved.

Appendix B. Theorem 2.2 proof

This proof is a sketched version of the proof presented by Astolfi et. al

in [28].

First, define the following change of coordinates

ξi , [xi − x̂i, ε(xi+1 − ηi)]>, i = 1, ..., n− 1

ξn , xn − x̂n (B.1)
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The dynamics of the transformed systems are governed by

ξ̇i =
1

ε
Eiξi + εB2ūi +

1

ε

αi
βi

 w̄i
ξ̇n = −αn

ε
ξn + ūn−1 +

1

ε
w̄n

where w̄1 = v and w̄i = −satri(ηi−1) for i = 2, ..., n, ūi = xi+2 − satri+2
(ηi+1)

for i = 1, ..., n− 2 and ūn−1 = φ(x̂, 0)− φ(x,d).

By virtue of (9), the matrices Ei are Hurwitz. Moreover, since x and

d evolve in a compact set the variable ui is upper-bounded by a positive

constant. Finally, the factors w̄i are also upper-bounded by a positive con-

stant. Taking into account these details, considering (9) and following some

Lyapunov arguments similar to the ones in Theorem’s 2.1 proof (Lemma 5

of [28]), it is possible to show that, if ε is small enough, the following holds

‖ξi‖ ≤ c1ie

−c2i

ε
t
‖ξi(0)‖+ ε2c3iui + c4i

where c1i, ..., c4i for i = 1, ..., n are some positive constants independent from

ε.

Moreover, the following bound holds by definition of the coordinate change

(B.1)

‖xi − x̂i‖ ≤ ‖ξi‖ (B.2)

Second, if the matrix inequality (9) is satisfied and ‖v‖∞ is small enough,
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the virtual states ηi will exit the saturation (if it is reached), which will

recover the classic high-gain observer convergence (6) [28].

As a consequence, the bound (10) can be immediately deduced with p̄i =

c1i maxx,η{‖xi − x̂i‖+ ‖xi+1 − ηi‖}+ c3i‖ūi‖∞ + c4i.

Appendix C. Theorem 2.3 proof

Define the coordinate change (B.1). The dynamics of the coordinates, ξi,

are depicted by

ξ̇1 =
1

ε
E1ξ1 + εB2(x3 − satr3(η2)) +

1

ε

α1

β1

 v +
1

ε

α1

β1

 sat√σ1(x1 − x̂1 + v)

(C.1)

for i = 2, ..., n− 1

ξ̇i =
1

ε
Eiξi + εB2(xi+2 − satri+1

(ηi))−
1

ε

αi
βi

 (xi − satri(ηi−1))

+
1

ε

αi
βi

 sat√σi(satri(ηi−1)− x̂i) (C.2)

ξ̇n =
1

ε
αnξn + φ(x̂, 0)− φ(x,d)− 1

ε
αn(xn − satrn(ηn−1))

+
1

ε
αnsat√σn(satrn(ηn−1)− x̂n) (C.3)
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Now consider the radially unbounded Lyapunov function

V1 = ξ>1 P1ξ1 + σ1 (C.4)

where Pi is symmetric positive definite matrix such that

P1E1 + E>1 P1 = −I

The derivative of the Lyapunov function (C.4) satisfies

V̇1 ≤ −
1

ε
ξ>1 ξ1+2ξ>1 P1εB2(x3−satr3(η2))+

2

ε
ξ>1 P1

α1

β1

 (v+sat√σ1(x1−x̂1+v))−q1

ε2
σ1+p1ε‖e1‖

As the states x ∈ X and ‖satr3(η2)‖ ≤ r3 its easy to see that ‖x3 −

satr3(η2)‖ ≤ c1, where c1 is a positive constant. Moreover, notice that

‖sat√σ1(x1 − x̂1 + v)‖ ≤ ‖√σ1‖ and ‖e1‖ ≤ ‖ξ1‖, by definition. Therefore,

the time derivative of V1 can be upper bounded as

V̇1 ≤ −
1

ε
‖ξ1‖2 + 2‖ξ1‖‖P1‖ε‖B2‖c1 + 4‖ξ1‖2‖P1‖2

∥∥∥∥
α1

β1

∥∥∥∥2

+
1

ε2
‖σ1‖ −

q1

ε2
‖σ1‖+ p1ε‖ξ1‖

+
2

ε
‖ξ1‖‖P1‖

∥∥∥∥
α1

β1

∥∥∥∥‖v‖∞.
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Then, for all ε ≤ 1

8‖P1‖2

∥∥∥∥
α1

β1

∥∥∥∥2

and all q1 ≥ 2, the following holds

V̇1 ≤ −
1

2ε
‖ξ1‖2− 1

ε2
σ+2ε‖ξ1‖(‖P1‖‖B2‖c1 +p1)+

2

ε
‖ξ1‖‖P1‖

∥∥∥∥
α1

β1

∥∥∥∥‖v‖∞
(C.5)

Finally, for a sufficiently small ε, it is possible to show that ‖ξ1‖ will be

ultimately bounded by (Theorem 4.5 of [49])

‖ξ1‖ ≤ k1‖v‖∞ (C.6)

where k1 is some positive constant.

Now consider the radially unbounded Lyapunov function

V2 = ξ>2 P2ξ2 + σ2 (C.7)

where P2 is symmetric positive definite matrix such that

P2E2 + E>2 P2 = −I.
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The derivative of the Lyapunov function (C.7) satisfies

V̇2 ≤ −
1

ε
ξ>2 ξ2 + 2ξ>2 P2εB2(x4 − satr4(η3)) +

2

ε
ξ>2 P2

α2

β2

 sat√σ2(sat√r2(η1)− x̂2)

− q2

ε2
σ2 + p2ε‖η1 − x̂2‖ −

2

ε
ξ>2 P2

α2

β2

 (x2 − satr2(η1)).

Again, as the states x ∈ X and ‖satr4(η3)‖ ≤ r4 its easy to see that

‖x4 − satr4(η3)‖ ≤ c2, where c2 is a positive constant. Moreover, notice

that sat√σ2(sat√r2(η1) − x̂2) ≤ ‖√σ2‖, by definition; and, after some time,

ε‖x2 − satr2(η1)‖ ≤ ‖ξ1‖ ≤ k1‖v‖∞. Additionally, the following bound holds

for some positive value n

‖η1 − x̂2‖ ≤ |η1 − x2|+ |x2 − x̂2| ≤
√
n

ε
‖ξ2‖

where | · | is the absolute operator.

Therefore, after some time, the time derivative of V2 can be upper bounded

as

V̇2 ≤ −
1

ε
‖ξ2‖2 + 2‖ξ2‖‖P2‖ε‖B2‖c2 + 4‖ξ2‖2‖P2‖2

∥∥∥∥
α2

β2

∥∥∥∥2

+
1

ε2
‖σ2‖

− q2

ε2
‖σ2‖+ p2

√
n‖ξ2‖+

2

ε2
‖ξ2‖‖P2‖

∥∥∥∥
α2

β2

∥∥∥∥k1‖v‖∞.
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Then, for all ε ≤ 1

8‖P2‖2

∥∥∥∥
α2

β2

∥∥∥∥2

and all q2 ≥ 2, the following holds

V̇2 ≤ −
1

2ε
‖ξ2‖2 − 1

ε2
‖σ2‖+ 2‖ξ2‖(‖P2‖ε‖B2‖c2 + p2

√
n) +

2

ε2
‖ξ2‖‖P2‖

∥∥∥∥
α2

β2

∥∥∥∥k1‖v‖∞

Again, for a sufficiently small ε, it is possible to show that ‖ξ2‖ will be

ultimately bounded by (Theorem 4.5 of [49])

‖ξ2‖ ≤
k1

ε
‖v‖∞

where k2 is some positive constant.

Indeed, by repeating this process for all i = 1, ..., n, it is possible to proof

that, after some time,

‖ξi‖ ≤
ki
εi−1
‖v‖∞ i = 1, ..., n. (C.8)

Finally, the following bound holds by definition of the coordinate change

(B.1)

‖xi − x̂i‖ ≤ ‖ξi‖

which ends the proof.
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Appendix D. PEMFC model parameters

Table 5 summarizes the parameter’s value of the model presented in sec-

tion 3.
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