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Abstract
The task of Language-guided Video Object Segmentation (LVOS) aims at generating binary
masks for an object referred by a linguistic expression. When this expression unambigu-
ously describes an object in the scene, it is named referring expression (RE). Our work
argues that existing benchmarks used for LVOS are mainly composed of trivial cases, in
which referents can be identified with simple phrases. Our analysis relies on a new cate-
gorization of the referring expressions in the DAVIS-2017 and Actor-Action datasets into
trivial and non-trivial REs, where the non-trivial REs are further annotated with seven RE
semantic categories. We leverage these data to analyze the performance of RefVOS, a novel
neural network that obtains competitive results for the task of language-guided image seg-
mentation and state of the art results for LVOS. Our study indicates that the major challenges
for the task are related to understanding motion and static actions.

Keywords Referring expressions · Video object segmentation · Vision and language

1 Introduction

Video Object Segmentation (VOS) [33, 44] has been traditionally considered on setups
where a user would annotate the pixels of an object in a video frame, and an automatic sys-
tem would extend this to the rest of video frames where the object is visible. Our work aims
at simplifying the human-computer interaction by allowing linguistic expressions as initial-
ization cues, instead of user interactive segmentations under the form of a detailed binary
mask, bounding box, scribble or points. In particular, we focus on referring expressions
(REs), which allow the identification of an individual object in a discourse or scene (the
referent). REs unambiguously identify the target instance. For example, Fig. 1 depicts REs
related to one of the objects contained in a video sequence, which is highlighted in green.
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Fig. 1 Video sequences for DAVIS-2017 with REs and our results. The first column shows a reference frame,
the second to third columns depict the masks produced by our model when given the RE shown on top.
Finally, the fourth to fifth columns show the results for the REs shown on top of these columns, which refers
to another object of the video sequence

Language-guided Video Object Segmentation (LVOS) was first addressed by Khoreva
et al. [21], and later tackled by Gavrilyuk et al. [12] and Wang et al. [40]. Compared to
related works on still images [4, 48], REs for video objects may be more complex, as they
can refer to variations in the properties of the objects, such as a change of location or appear-
ance. The particularities of REs for videos were initially addressed by Khoreva et al. [21],
who built a dataset of REs divided in two categories: REs for the first frame of a video, and
REs for the full clip. Our work proposes another approach for analyzing the performance of
the state of the art in LVOS. We identify seven categories of REs, shown in Table 1, and use
them to annotate existing datasets.

The main goal of our work is to study the task of LVOS, by focusing on the effect
the different categories of REs have on the model performance in current benchmarks. We
address both the language-guided image segmentation and the LVOS tasks with RefVOS,
our end-to-end deep neural network that leverages the language representation model BERT
[10] to encode the phrases into distributed representations. RefVOS stands for Referring
Expressions for Video Object Segmentation. Our model achieves results comparable to the
state of the art for the RefCOCO dataset of still images [20], and improves the state of
the art over the DAVIS-2017 [34] and Actor-Action datasets (A2D) [43] for video datasets

Table 1 The semantic categories used for annotation

Category Q: Does RE tell you about referent r . . . Example

appearance how r looks like? . . . in a yellow dress. . .

category r’s name or category (noun) . . . seagull. . .

location where r is located? (rel. to image/other object) . . .near tractor. . .

motion if r moves or changes its location? . . .walking. . .

obj-motion if r moves or changes another object’s location? . . . riding a bike. . .

static what r is doing (if not moving)? . . . eating. . .

obj-static if r acts on another object (no motion)? . . .holding a bike. . .
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augmented with the phrases collected by Khoreva et al. [21] and Gavrilyuk et al. [12],
respectively. We also identify the categories of REs which are most challenging for RefVOS,
using our own REs annotations for the A2D dataset.

Our main contributions are summarized as follows: (1) an end-to-end model, namely
RefVOS, that achieves state of the art performance with available expressions for DAVIS-
2017 and A2D benchmarks, (2) a novel categorization of REs tailored to the video scenario
with an analysis of the current benchmarks, and (3) an extension of A2D with additional
REs of varying semantic information to analyze the limitations and strengths of our model
according to the proposed linguistic categories.

The models, code and extended dataset of REs are available at https://github.com/
miriambellver/refvos.

2 Related work

2.1 Language-guided image segmentation

The task of Language-guided Image Segmentation, also known as referring image seg-
mentation, was first tackled by Hu et al. [16]. They used VGG-16 [39] to obtain a visual
representation of the image, and a Long Short-Term Memory (LSTM) network to obtain
an embedding of the RE. From the concatenation of visual and language features, the seg-
mentation of the referred object is obtained. Posterior work [26] explored how to include
multi-scale semantics in the pipeline, by proposing a Recurrent Refinement Network that
takes pyramidal features and refines the segmentation masks progressively. Liu et al. [27]
argued to better represent the multi-modality of the task by jointly modeling the language
and the image with a multi-modal LSTM that encodes the sequential interactions between
words, visual features and the spatial information. With the same purpose of better capturing
the multi-modal nature of this task, long-range correlations between the visual and lan-
guage representations were reinforced by learning a cross-modal attention module (CMSA)
[46]. Building on the same idea, BRINet [17] added a gated bidirectional fusion module to
better integrate multi-level features. STEP [4]. learned a visual-textual co-embedding that
iteratively refines the textual embedding of the RE with a Convolutional Recurrent Neural
Network, in a collaborative learning setup to improve the segmentation. An alternative may
consist of using off-the-shelf object detectors, like MAttNet [48]. In this case, a language
attention network decomposed REs into three components: subject, location, and relation-
ships, and merged the features obtained for each into single phrase embeddings. Given the
object candidate by the off-the-shelf object detector model and a RE, the visual module
dynamically weighted scores from all three modules to fuse them. A different approach was
proposed in CMPC [18], which leveraged multi-modal graph reasoning to identify the target
objects.

Whereas previous works mainly focus on how to better exploit the REs by designing
language encoders tailored to the task, our proposed architecture RefVOS leverages BERT
[10] to obtain the language representations. BERT is a bidirectional language encoder based
on transformers, a type of neural network architecture that is used by current state of the
art models in natural language processing [35] and are also more and more used in com-
puter vision [2, 42]. BERT is thus a strong baseline for obtaining language embeddings.
Another characteristic of our work, compared to previous methods such as MAttNet [48],
is that RefVOS directly produces pixel-wise annotations, without requiring object detec-
tions, which allows to train our model end-to-end. As a visual encoder, we use DeepLabv3
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[5], a state-of-the-art model for segmentation. Compared to other works which perform
early-fusion of multi-modal features (CMPC [18]), we apply late-fusion of the visual and
language features in order to predict the final segmentation of the referred region. Thanks
to late-fusion, we can work with off-the-shelf models for both the visual and the language
encoders. As a conclusion, RefVOS is a simpler model trained end-to-end that obtains a
performance comparable to the state of the art on still images.

2.2 Language-guided video object tracking

Object Tracking is a task similar to Video Object Segmentation as it also follows a referent
across video frames, but in the tracking case the model localizes the object with a bounding
box instead of a binary mask. Li et al. [24] and Feng et al. [11] tackle the object tracking
problem given a linguistic expression instead of providing a bounding box for the first
frame.

Our work provides pixel-wise segmentation masks that could be easily converted into
bounding boxes, and at the same time avoid the annotation ambiguities that result from
overlapping bounding boxes.

2.3 Language-guided video object segmentation (LVOS)

Video Object Segmentation (VOS) [33, 44] has traditionally focused on semi-supervised
setups in which a binary mask of the object is provided for the first frame of the video.
Khoreva et al. [21] proposed to replace the mask supervision with a linguistic expression.
In their work, they extended the DAVIS-2017 dataset [34], a popular dataset for VOS, by
collecting REs for the annotated objects. They provide two different kinds of annotations
collected by two annotators: first frame annotations are the ones that are produced by only
looking at the first frame of the video, whereas full video annotations are produced after see-
ing the whole video sequence. They used the image-based MAttNet [48] model pre-trained
on RefCOCO to ground the localization of the referred object, and then trained a segmen-
tation network with DAVIS-2017 to produce the pixel-wise prediction. To ensure coherent
bounding boxes across frames, they enforced temporal consistency with a post-processing
step. To the authors’ knowledge, Khoreva et al. [21] is the only work prior to ours that
focuses on REs for VOS. Related work by Gavrilyuk et al. [12] addresses a similar task by
segmenting video objects given an expression. They extend the Actor-Action Dataset (A2D)
[43] by collecting linguistic expressions, but some of them may be ambiguous with respect
to the intended referent, as they were not produced with the aim of unique reference, but
description. The authors propose a model with a 3D convolutional encoder and dynamic
filters that specialize in localizing the target objects. Wang et al. [40] also leveraged 3D con-
volutional networks, adding cross-attention between the visual and the language encoder.
Concurrent to our work, Seo et al. [38] proposed URVOS, a model for LVOS composed of a
cross-modal attention module for the visual and language features, and a memory attention
module to leverage information from past predictions in a sequence.

Compared to the aforementioned methods, our work proposes a simpler model trained
end-to-end that treats each video frame independently. Hence, RefVOS does not exploit the
temporal information, yet it outperforms all previous works. Our method has the advantage
that it can be used on either still images or video sequences, and it does not rely on heavy
3D encoders such as the architectures by Gavrilyuk et al. [12] and Wang et al. [40]. In
contrast to Khoreva et al.’s [21] approach, our network can be trained end-to-end as it does
not rely on any detection network or post-processing step. Finally, the most recent work
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URVOS [38] is a complex architecture due to the cross-attention and memory network.
RefVOS proposes a much simpler architecture composed of two independent encoders with
late-fusion of embeddings.

2.4 Categorization of referring expressions

RefCOCO, RefCOCO+ [49] and RefCOCOg [30] are datasets that provide REs for the still
images in the MSCOCO dataset [25]. Each dataset focuses on different aspects related to the
difficulty of REs: those of RefCOCO and RefCOCO+ were collected using the interactive
ReferIt two-player game [20], designed to crowdsource expressions that uniquely identify
the target referents. However, for RefCOCO+, location information was disallowed. Ref-
COCOg, in turn, collected non-interactively, only contains non-trivial instances of target
objects, that is, there is at least one other object of the same class in an image (e.g., multi-
ple dogs). The CLEVR [19] and CLEVRER [47] datasets contain objects of certain shapes,
attributes such as sizes and colors, and spatial relationships. CLEVR uses synthetic images
and linguistic expressions designed to test visual question answering systems, while our
work focuses on human-produced language and natural videos. CLEVR-Ref+ [29] extends
the CLEVR dataset by adding REs for Language-guided Image Segmentation instead of
visual question answering, but using the same synthetic images.

Khoreva et al. [21] categorize the REs they collected for DAVIS-2017 in order to ana-
lyze the effectiveness of their proposed model. This is similar to our work, however, while
they distinguish REs according to their length and whether they contain spatial words
(e.g., left) or verbs, we propose a more fine-grained, semantic categorization, presented
in Table 1, that also distinguishes between different aspects of verb meaning related to
motion and object relations. Khoreva et al. [21] further analyze the REs in DAVIS-2017 with
respect to the parts of speech they contain, while we use our semantic categories for dataset
analysis.

3 RefVOSmodel

The task of language-guided image segmentation is to, given a still image and a linguis-
tic expression, segment the region to which the expression refers. Language-guided video
object segmentation (LVOS) is a natural extension of this task, which aims at segmenting
the referred object in the different video frames of the sequence. The latter is a more com-
plicated task as the linguistic expression can refer to the motion or scene changes in the
video.

In our work, we address the task of language-guided image segmentation and LVOS with
the deep neural network depicted in Fig. 2, that we call RefVOS. RefVOS operates at the
frame level, i.e., it treats each frame independently, and is thus applicable to both images and
videos. It uses state of the art visual and linguistic feature extractors, which are combined
into a multi-modal embedding decoder to generate a binary mask for the referent.

In order to define the architecture of RefVOS, we first formalize the LVOS task: In this
task, the input of the system (that we define as X) consists of an input video (V ) and a
linguistic expression (L), i.e., X = {V,L}. Each video sequence is composed of T video
frames V = {I0, I1, I2, . . . IT −1}, and each linguistic expression is composed of M tokens
L = {w0, w1, w2, . . . wM−1}. Note that only video frame It is different at each time step t ,
whereas the expression L is kept constant for all video frames.
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Fig. 2 Architecture of our RefVOS model

3.1 Visual encoder

To encode the images, we rely on DeepLabv3, a network for semantic segmentation based
on dilate / atrous convolutions [5]. We use DeepLabv3 with a ResNet101 [14] backbone and
an output stride of 8. The Atrous Spatial Pyramid Pooling (ASPP) has atrous convolutions
with rates of 12, 24 and 36. Following the formulation defined in Section 3, the visual
embedding is obtained independently for each video frame (It ). In the case of the LVOS
task, for each video frame It ∈ V , we define the visual embedding as ev,t = Venc (It ),
where Venc() is the DeepLabv3 network.

3.2 Language encoder

In contrast to previous works addressing language-guided image segmentation, we are the
first ones to leverage the bidirectional transformer model BERT [10] as language encoder.
We use BERT in our pipeline in order to obtain an embedding for the linguistic expres-
sions. We choose the BERT-base architecture, which is composed of 12 layers and a total
of 110M parameters. We first fine-tune BERT (originally pre-trained on the BookCorpus
[52] and the English Wikipedia) with the REs of RefCOCO using the masked language
modelling (MLM) loss for one epoch, which consists of randomly masking a percentage
of input tokens and then predicting them, following the common fine-tuning procedure for
BERT. We then integrate BERT into our pipeline and fine-tune it specifically towards the
language-guided image segmentation task: to this end we tokenize the linguistic expression
L and add [CLS] and [SEP] tokens at its beginning and end, respectively. BERT produces
a 768-dimensional embedding for each input token. We adopt the procedure of Devlin et al.
[10] and extract the embedding corresponding to the [CLS] input token, i.e., the pooled out-
put, as it aggregates a representation of the whole sequence. The encoded expression is then
converted to a 256-dimensional embedding with a linear projection.

We formally define the output of the language encoder as el = Lenc (L),
where Lenc() first tokenizes the linguistic expression L into the sequence of tokens
{w0, w1, w2, . . . wM−1}, then obtains the pooled output from BERT-base, and finally pro-
duces the 256-dimensional language embedding el . Note that this embedding is unique for
the whole video sequence V .

4424 Multimedia Tools and Applications (2023) 82:4419–4438



3.3 Multi-modal embedding

At each time step t , we obtain a multi-modal embedding Yt by performing element-wise
multiplication of the language features and the visual features extracted by the ASPP from
DeepLabv3. That is, Yt = ev,t ⊗ el .1 A convolutional layer then predicts two maps, one
for the foreground and another one for the background class, St = F(Yt ), where St is the
segmentation result at time step t and F is the convolutional layer. We employ the cross-
entropy loss commonly used for segmentation. As in this case there are only two class
categories, the loss is the following:

L(St , Ŝt ) = −St log Ŝt − (1 − St ) log(1 − Ŝt )

where Ŝt is the predicted segmentation and St is the ground truth segmentation using a
binary encoding St = {0, 1}.

4 Referring expression categorization

We propose a novel categorization for referring expressions (REs), i.e., linguistic expres-
sions that allow the identification of an individual object (the referent) in a discourse or
scene. Our categorization is adapted to the challenges posed by the video object segmen-
tation (VOS) task. We follow the commonly adopted definition of REs put forward by
computational linguistics and natural language processing (e.g., [36]), and consider a (noun)
phrase as a RE if it is an accurate description of the referent, but not of any other object in
the current scene. Likewise, in the vision & language research field, visual RE resolution
and generation has seen a rise of interest, especially in still images [8, 28, 30, 31, 50], and
more recently also on videos [1, 6]. The task is formulated as, given an instance comprising
an image or video with one or multiple objects, and a RE, identify the referent that the RE
describes by predicting, e.g., its bounding box or segmentation mask. The difficulty of the
task increases with the number of objects appearing in the scene, and the number of objects
of the same class (e.g., multiple dogs). Such cases require more complex REs in order to
identify the referent.

In order to make progress on VOS with REs and allow for a systematic comparison of
methods, benchmark datasets need to be challenging from both the visual and linguistic
perspective. However, for example, most video sequences in the DAVIS-2017 dataset used
in Khoreva et al. [21] show a single object in the scene or, at most, different objects from
different classes. In these cases, the actual challenge is that of predicting accurate object
masks for the RE. On the other hand, the existing datasets for VOS with REs do not focus
on the particularities that video information provides either, and often use object attributes
which can be already captured by a single frame, or are not even true for the whole clip
(e.g., the A2D dataset provides linguistic expressions for only a few frames per clip).

Our novel categorization of REs for video objects allows the analysis of datasets with
respect to the difficulty of the REs and the kind of semantic information they provide. We
apply it to label and analyze existing expressions of DAVIS-2017 and A2D. In addition,
we use this categorization to extend a subset of the A2D test set with REs which contain
semantically varying information to analyze how our model behaves with respect to the
different categories.

1We noticed that the multiplication yielded better performance than addition or concatenation.
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4.1 Difficulty and correctness of datasets

We first assess the validity and visual difficulty of a subset of DAVIS-2017 and A2D, by
classifying each instance (an object and its linguistic expression) into trivial or non-trivial:
if the referent is not the only object of a certain class in the video (e.g., multiple dogs) we
consider it non-trivial, otherwise trivial. We further label each expression according to its
linguistic ambiguity and correctness: we mark it as no RE if its referent is not the only object
in the video which could be described by the expression, i.e., if it does not comply with our
definition of a RE given above, and as wrong object if it does not match the target object of
the instance but another object in the same video.

Data and Annotation Procedure Annotation was performed on the DAVIS-2017 valida-
tion set (61 REs provided by annotator 1 [21]) in the full video setup (see Section 2), as
well as on the subset of the A2D test set which contains at least two annotated objects (856
instances). Each instance contained therein was annotated by one out of four persons (all
co-authors). Note that we assume the instances in A2D videos with only a single annotation
as trivial, and automatically labeled them as such (439 instances).

Results Fig. 3 shows the proportion of expressions in the DAVIS-2017 and A2D sets
with respect to their difficulty, ambiguity, and correctness. Despite being collected in a
(non-interactive) referential two-player game setup, DAVIS-2017 contains a considerable
proportion of ambiguous expressions (no RE, 8%). The proportion in A2D is slighlty higher
(11%), but note that A2D was designed to contain descriptive expressions in contrast to
unique references (as defined above). About 52% in DAVIS and 35% in A2D are non-
trivial expressions, that is, more challenging for LVOS from both the linguistic and visual
perspective, since the object class itself is not sufficient to uniquely identify the target object.

4.2 Semantic categorization of REs

Our categorization, shown in Table 1, is inspired by semantic categories of situations and
utterances in linguistics [13, 23], tailored to the situations found in video data. Specifi-
cally, we analyze the REs with respect to the type of information they express, by assigning
them categories assumed to be relevant for reference to objects in visual scenes. We focus
on information relevant for both, objects in still images and videos, namely the category,

Fig. 3 Proportion of expressions in the val set of DAVIS-2017 and the test set of A2D by their difficulty
((non-)trivial), ambiguity ((no) RE), and correctness (wrong object, in A2D only)
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appearance, and the location of the referent, and distinguish between information assumed
to be more relevant for videos only, namely motion vs. static events. If, according to the
RE, the referent acts upon other objects in the scene, we distinguish between whether an
object is moved by the referent or not (obj-motion vs. obj-static). This information may be
particularly valuable for models that reason over object interactions.

(Psycho)linguistic studies have observed a tendency of REs to contain redundant non-
discriminating information, i.e., logically more information than required to establish
unique reference, arguably because this reduces the effort needed for identification [15, 23].
In particular the kind (category) of the object and salient properties, such as color, have
been found to be used redundantly [37]. To assess whether the phenomenon of redundancy
is born out in the video datasets, we additionally label instances as redundant or minimal.
A RE is labeled as minimal if it does not include more information than required to identify
the target object, and redundant otherwise.

4.2.1 Data and annotation procedure

We collect annotations for the same 61 instances of the validation set of DAVIS-2017 as
above, and for a subset of the test set of A2D, which we call A2Dre henceforth. We obtain
A2Dre by selecting only instances that were labeled as non-trivial, which are 433 REs
from 190 videos. We do not use the trivial cases since the analysis of such examples is not
relevant, as referents can be described by using the category alone. Each annotator was pre-
sented with a RE, a video in which the target object was marked by a bounding box, and a set
of questions paraphrasing our categories (see Table 1). Three annotators (all co-authors of
the paper) individually labeled all instances of the DAVIS-2017 val set. The inter-annotator
agreement can be considered substantial for all categories, with Davies & Fleiss’ kappa
coefficients [9] between κ = .83 and .97 (except obj-static, κ = .35, which has only 5
positively labeled instances by at most 2 annotators, and category which obtained perfect
agreement). A2Dre was subsequently annotated by the same 3 annotators. Our final set of
category annotations used for analysis was derived by means of majority voting: for each
non-trivial RE, we kept all category labels which were assigned to the RE by at least two
annotators.

4.2.2 Results: What kind of information do REs express?

First of all, we found 99% of the REs for non-trivial instances in A2Dre, and 66% in DAVIS-
2017 val (74% including trivial), respectively, to contain redundant information. Recall
that only the REs in DAVIS-2017 were obtained in a referential setup, the relatively larger
proportion of redundant REs in A2D is therefore not surprising.

Figure 4 shows the proportion of instances in the two datasets (DAVIS-2017 val and
A2Dre) that were labeled with the individual categories. As expected, the name or cate-
gory of the referent is virtually always expressed. The visual properties of the referent, i.e.,
appearance, is prominent in both datasets, too (approx. 60%). Taken together with their
high redundancy ratio, this confirms what has been found in psycholinguistic studies on ref-
erence [23]. The remaining categories, however, are rare in both datasets, or are only highly
frequent in A2Dre, with location and motion being used in the majority of REs. That A2Dre
comprises more complex REs than DAVIS-2017 may be not only due to their collection as
descriptive, instead of discrimininative phrases, but also due to the much higher complexity
of the video scenes. Note that information about referent-object interactions (obj-static and
obj-motion) is neglectable, which illustrates the datasets’ limited usefulness for research on
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Fig. 4 REs in the validation set of DAVIS-2017 and A2Dre with respect to their categories

reasoning over object interactions [41, 45, 51]. In the experiments we report in Section 5, we
discard these categories, and focus on the remaining categories only, for which we augment
the A2Dre dataset.

4.3 Extending A2Dwith REs

As explained above, A2Dre is a subset from the A2D test set including 433 non-trivial REs.
Due to its highly unbalanced distribution across the 7 semantic categories (Fig. 4), we select
the 4 major categories appearance, location, motion and static. The four categories have
in common that in most cases, for a given referent, a RE can be provided that expresses
a certain category, and one that does not. We use these categories to augment A2Dre with
additional REs, which vary according to the presence or absence of each of them. Specifi-
cally, based on our categorization of the original REs, for each RE re and category C, we
produce an additional RE re′ by modifying re slightly such that it does (or does not) express
C. For example, for the last RE in Fig. 6, i.e. girl in yellow dress standing near the woman,
which could be categorized as appearance (App+), location (Loc+), no motion (Motion-)
and static (Static+), we produce new REs for each category: girl standing near the woman
(no appearance, App-), girl in yellow dress standing (no location, Loc-), girl in yellow dress
walking (motion, Motion+) and girl in yellow dress near the woman (no static, Static-). We
do not apply this procedure for category, since it is expressed in almost all REs, and its
removal may be difficult in many cases. We will refer to this extended dataset as A2Dre+.

5 Experiments

We report results with our model on two different tasks: language-guided image segmen-
tation and language-guided video object segmentation (LVOS). The results for still images
are obtained on RefCOCO and RefCOCO+ [49], while those for videos correspond to
DAVIS-2017 and A2D.

5.1 Language-guided image segmentation

Table 2 shows the impact of BERT embeddings in our model on both RefCOCO and
RefCOCO+, compared with a bidirectional LSTM similar to Chen et al. [4] for encod-
ing the linguistic expression. In particular, we average the GloVe embeddings [32] of each
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Table 2 Overall IoU for RefCOCO and RefCOCO+

RefCOCO RefCOCO+

val testA testB val testA testB

Ours with Bi-LSTM 48.46 52.90 44.43 35.35 40.72 28.43

Ours with BERT 58.65 62.28 54.28 42.07 46.46 34.23

Ours with BERT (+MLM loss) 59.45 63.19 54.17 44.71 49.73 36.17

MattNet [48] 56.51 62.37 51.70 46.67 52.39 40.08

CMSA [46] 58.32 60.61 55.09 43.76 47.60 37.89

LANG2SEG [7] 58.90 61.77 53.81 – – –

STEP (1-fold) [4] 56.58 58.70 55.39 – – –

STEP (4-fold) [4] 59.13 – – – – –

STEP (5-fold) [4] 60.04 63.46 58.97 48.18 52.33 40.41

BRINet [17] 61.35 63.37 59.57 48.57 52.87 42.13

CMPC [18] 61.36 64.53 59.64 49.56 53.44 43.23

MLM loss refers to the masked language modelling loss used training BERT with the REs from RefCOCO

token and concatenate the mean embeddings of the forward and backward pass. This base-
line is compared to two configurations that use BERT. The first one fine-tunes BERT for
the language-guided image segmentation task, and significantly boosts performance over
using GloVe embeddings. The second has an additional step, that consists in first training
BERT using the masked language modelling (MLM) loss with the REs from RefCOCO,
as explained in Section 3, and then fine-tuning BERT on the language-guided image seg-
mentation task (as in the previous configuration). We see that this configuration brings an
additional gain.

Table 2 also compares our model with the state of the art on language-guided image
segmentation. STEP [4] consists of an iterative model that refines the RE representation to
improve the segmentation. Note that the model must be run for each iteration. Our model
surpasses STEP (1-fold), which corresponds to a comparable computational cost, on Ref-
COCO val and testA, and is still slightly better than STEP (4-fold). Compared to STEP
(5-fold), the performance of our method is slightly lower. BRINet [17] and CMPC [18] are
both superior in terms of performance. However, compared to ours, they are significantly
more complex. CMPC is composed of several independent modules and needs to build a
relational graph per query. BRINet has a cross-attentional and a bidirectional module to fuse
cross-modal features. Both BRINet and CPMC use a Dense-CRF post-processing step [22].
In comparison, our network is simpler and is fully end-to-end trainable. Qualitative results
generated with our best model on RefCOCO are depicted in Fig. 5. We note how our model
distinguishes properly the referred instance and generates an accurate mask. We conclude
that our approach is competitive with the state of the art for language-guided image seg-
mentation. Hence, RefVOS is a valid model for language-guided VOS, and for running an
analysis on our RE categorization.
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Fig. 5 Qualitative results obtained on RefCOCO

5.2 Language-guided video object segmentation (LVOS)

Our model is assessed for LVOS on DAVIS-2017 and A2D. In both cases, each video frame
is treated separately, so we use the same architecture as in the experiments on still images
in Section 5.1.

Our experiments on the DAVIS-2017 validation set are reported in Table 3. All models
are pre-trained on RefCOCO. Results are provided with the J&F metric adopted in the
DAVIS-2017 challenge for the two different types of REs collected by Khoreva et al. [21]
explained in Section 2. J&F is the average between a region-based evaluation measure (J)
and a contour-based one (F). Our experiments indicate that our baseline model trained only
with RefCOCO already outperforms the best model by Khoreva et al. [21], despite the latter
being fine-tuned on the same DAVIS-2017 dataset (+Ft DAVIS segms.). The difference
increases when our model is fine-tuned with the segmentations provided in the training set,
but freezing the language encoder. This is the configuration comparable to Khoreva et al.
[21] in terms of training data, and brings gains of 2.7 and 4.9 points for the first frame

Table 3 J&F on DAVIS-2017 validation set

Model +Ft DAVIS +Ft DAVIS REs J&F

segms. 1st frame full video 1st frame full video

midrule Khoreva et al. [21] � 39.3 37.1

URVOS [38] � � 44.1 –

39.8 40.8

RefVOS � 42.0 42.0

� � 44.5 45.1

� � 42.7 45.1

4430 Multimedia Tools and Applications (2023) 82:4419–4438



and full video REs, respectively. Finally, we also fine-tune the BERT language encoder,
obtaining a significant extra gain in performance. We want to highlight that our frame-based
model does not rely on any post-processing to add temporal coherence, or optical flow,
in contrast to Khoreva et al. [21], so our method may be more efficient computationally.
We also compare our model to URVOS [38], a concurrent work to ours. RefVOS performs
slightly better when trained with the same amount of annotated data. Qualitative results for
full video REs are shown in Fig. 1. When the multiple objects belong to different categories,
the model produces accurate masks from the language query, whereas it is more challenging
to properly segment the referent in cases where there are multiple instances of the same
class in the sequence (3rd row). The fine-tuning is done with the full video REs, and the
REs shown in Fig. 1 are of the same kind. We note how the referred object is in general
identified and properly segmented.

The results for A2D are shown in Table 4, using the metrics that allow us a compari-
son with previous works [12, 40]. Our model trained only with A2D already outperforms
Gavrilyuk et al. [12] in Precision at a high threshold and at the Overall and Mean Intersec-
tion Over Union (IoU). Moreover, our model significantly increases its performance when
it is first trained on RefCOCO and later fine-tuned on A2D, both its visual and language
branches. In this setup, it achieves state of the art results in all metrics by significant mar-
gins. Note that both Gavrilyuk et al. [12] and Wang et al. [40] leverage an encoder that was
pre-trained on the Kinetics dataset, which includes 650,000 video clips [3]. Hence, these
models see a large amount of annotated data for action recognition in videos. We also want
to stress our higher Precision values at high thresholds (Prec@0.9) compared to previous
works [12, 40], which indicate that our model is able to produce more accurate masks.
Visualizations with our model are illustrated in Fig. 6.

In conclusion, RefVOS is state of the art for DAVIS-2017 and A2D on the LVOS task,
although it is a frame-based model. This motivates the analysis of our model when tested
with different types of REs, based on the categorization and difficulty analysis proposed in
Section 4.

5.3 Referring expressions analysis for LVOS

Firstly, we analyze the performance on trivial and non-trivial linguistic expressions for both
the A2D test and DAVIS-2017 validation sets. Themean IoU per referent obtained for trivial
and non-trivial is 48.7 vs. 46.2 on DAVIS-2017, and 53.9 vs. 33.2 on A2D. We observe
that the performance is worse for the non-trivial cases for both datasets as expected, with a
major drop on A2D.

Table 4 Precision, overall IoU and mean IoU on A2D

Prec IoU

@0.5 @0.9 Overall Mean

Gavrilyuk et al. [12] 50.0 0.4 55.1 42.6

Wang et al. [40] 55.7 2.0 60.1 49.0

RefVOS with A2D 49.5 6.4 59.9 43.0

RefVOS with RefCOCO 27.9 3.4 41.4 25.6

+ finetuned on A2D 57.8 9.3 67.2 49.7
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Fig. 6 Video sequences for A2D with expressions (language queries) and the results of our model. The first
column shows a reference frame, the second to fourth columns depict the masks produced by our model when
given the expression shown on top. Finally, the fifth to seventh columns show the results for the expression
shown on top of these columns, which refers to another object of the video sequence

Secondly, we study the effect of RE categories in relation to the performance of RefVOS.
The A2Dre+ dataset described in Section 4.3 allows us to have the same number of refer-
ents for all major categories: appearance, location, motion and static. Each of our referents
is annotated with highly similar REs (two for each category) and are hence directly com-
parable. In contrast, Khoreva et al. [21] split the videos into two different subsets with
non-comparable referents. Table 5 compares the performance of RefVOS depending on
whether each of the categories C is present in the RE (C+, the RE expresses C) or not (C-).
The results show that the presence of appearance (App+) and location (Loc+) categories
yields significantly higher results compared to their absence (App- and Loc-, respectively).
We also observe a drop in performance when the static category is present (Static+), which
indicates that the model struggles at identifying a referent based on static actions such as
holding, sitting, eating. In contrast, the presence (Motion+) or absence (Motion-) of the
motion category does not affect the performance, which actually means that the model is
unable to benefit from this type of REs.

In what follows, we further visually analyze the results obtained with RefVOS depending
on the categories that appear in the corresponding REs. Figure 7 includes examples of the
results of our model with A2Dre+. We analyze the categories appearance, location, motion
and static, which are the most common semantic categories. Each column is a first frame
of a video sequence with a non-trivial case, and each row is a different RE that has or
has not a certain category. As we concluded with the quantitative results, the performance

Table 5 Effect of the presence (C+) or absence (C-) of a category C in REs

App+ App- Loc+ Loc- Motion+ Motion- Static+ Static-

33.90 30.15 34.15 30.78 35.58 35.60 34.28 36.21
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App-

App+

Loc-

Loc+

Motion-

Motion+

Static-

Static+

Fig. 7 Each column is the first frame of a video sequence of A2D. Each row indicates if the RE that produces
the depicted result does (C+) or does not (C-) contain a certain category C from our proposed categorization.
The framed REs are the original REs in the dataset [12]. For the example in the fourth column, the natural
expression in the annotations from Gavrilyuk et al. [12] is man standing, which is not a RE as it does not
uniquely identify the target object as defined in Section 4. For this reason, for this example all REs shown in
the Figure are our own annotations

4433Multimedia Tools and Applications (2023) 82:4419–4438



Table 6 Overall andMean IoU on A2D for different levels of information in REs

Overall IoU Mean IoU

Trivial Non-Trivial All Trivial Non-Trivial All

Generic 45.6 18.1 41.6 34.6 10.0 29.6

Only Actor 65.6 34.8 60.8 51.5 22.8 45.7

Only Action 56.3 30.7 52.6 43.0 18.5 38.0

Actor + Action 66.6 37.3 62.2 51.3 24.8 45.9

Full phrase 70.2 47.5 67.2 53.9 33.2 49.7

when the appearance and location categories are present is higher compared to when these
categories are absent. Regarding the motion and static categories, we first notice that the
annotators considered it impossible for some cases to create corresponding REs.We indicate
those examples with the “Not Applicable” label. We see how the presence or the absence
of the motion and static categories has a minimal impact to the results. In fact, adding
these categories (through a description of the shown action, e.g., “crawling” forMotion+ or
“eating” for Static+) even leads to worse segmentations, like in the example “a man eating
a big sandwich” from the second column in Fig. 7.

Finally, in Table 6 we study the effect of feeding the model with only the actor, the
action, or the actor and action, without formulating any RE, for all the test set of A2D.
These actor and action terms are obtained from the dataset collected by Gavrilyuk et al.
[12]. In most cases these expressions are not REs as they do not unambiguously describe the
referent in the video (cf. Section 4). Additionally, we consider a generic phrase thing. We
distinguish between trivial and non-trivial cases. Results show that RefVOS works signifi-
cantly better when the actor is provided than when the action is. Furthermore, performance
improves when using both. Finally, having the full linguistic phrase is still the best model.
Remarkably, our configuration with actor and action reaches higher Overall IoU than pre-
vious works that use complete linguistic phrases (see Table 4). Note that using the full
phrase improves performance especially for the non-trivial cases, as these require complete
linguistic expressions to identify the referent. We also want to stress that the aggregated per-
formance, i.e., considering all cases, is dominated by the performance of the trivial ones, as
they represent most of the dataset.

6 Conclusions

This work studies the difficulty of REs from benchmarks on Language-guided Video Object
Segmentation (LVOS), and proposes seven semantic categories to analyze the nature of
such REs. We introduce RefVOS, a novel model that is competitive for language-guided
image segmentation, and state of the art for LVOS. However, our analysis shows that bench-
marks are mainly composed of trivial cases, in which referents can be identified with simple
linguistic expressions. This indicates that the reported metrics for the task may be mislead-
ing. Thus, we focus on the non-trivial cases. We extend A2D with new REs with diverse
semantic categories for non-trivial cases, and test our model with them, which reveals that
it struggles at exploiting motion and static events, and that it mainly benefits from REs
based on appearance and location. We reckon that future research on LVOS should focus
on non-trivial cases describing motion and events, as they present a challenge for language
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grounding on videos. Concurrent to our work, Seo et al. [38] collected Refer-Youtube-VOS,
a large-scale benchmark for LVOS built on top of Youtube-VOS [44]. We believe that, as
future work, our categorization for REs could be used to classify the provided linguistic
expressions by this benchmark. Thus, models could be evaluated based on the non-trivial
cases and the different categories in order to analyze which REs are more challenging when
using a large-scale dataset.
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34. Pont-Tuset J, Perazzi F, Caelles S, Arbeláez P, Sorkine-Hornung A, Van Gool L (2017) The 2017 davis
challenge on video object segmentation. arXiv:1704.00675

35. Qiu X, Sun T, Xu Y, Shao Y, Dai N, Huang X (2020) Pre-trained models for natural language processing:
A survey. Sci China Technol Sci, pp 1–26

36. Reiter E, Dale R (1992) A fast algorithm for the generation of referring expressions. In: COLING
1992 volume 1: The 15th international conference on computational linguistics. https://www.aclweb.org/
anthology/C92-1038. Accessed 20 July 2022

37. Rubio-Fernández P (2016) How redundant are redundant color adjectives? an efficiency-based analysis
of color overspecification. Front Psychol 7:153

38. Seo S, Lee JY, Han B (2020) Urvos: Unified referring video object segmentation network with a large-
scale benchmark. In: Proceedings of the european conference on computer vision (ECCV)

39. Simonyan K, Zisserman A (2015) Very deep convolutional networks for large-scale image recognition.
In: International conference on learning representations (ICLR)

4436 Multimedia Tools and Applications (2023) 82:4419–4438

https://www.aclweb.org/anthology/D14-1086
http://arxiv.org/abs/1704.00675
https://www.aclweb.org/anthology/C92-1038
https://www.aclweb.org/anthology/C92-1038


40. Wang H, Deng C, Yan J, Tao D (2019) Asymmetric cross-guided attention network for actor and action
video segmentation from natural language query. In: Proceedings of the IEEE international conference
on computer vision, pp 3939–3948

41. Wang P, Wu Q, Cao J, Shen C, Gao L, Van Den Hengel A (2018) Neighbourhood watch: Referring
expression comprehension via language-guided graph attention networks. 2019 IEEE/CVF Conf Comput
Vis Pattern Recognit (CVPR), pp 1960–1968

42. Xie E, Wang W, Yu Z, Anandkumar A, Alvarez JM, Luo P (2021) Segformer: Simple and efficient
design for semantic segmentation with transformers. Adv Neural Inf Process Syst, vol 34

43. Xu C, Hsieh SH, Xiong C, Corso JJ (2015) Can humans fly? action understanding with multiple classes
of actors. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 2264–
2273

44. Xu N, Yang L, Fan Y, Yang J, Yue D, Liang Y, Price B, Cohen S, Huang T (2018) Youtube-
vos: Sequence-to-sequence video object segmentation. In: Proceedings of the european conference on
computer vision (ECCV), pp 585–601

45. Yang S, Li G, Yu Y (2019) Dynamic graph attention for referring expression comprehension. 2019
IEEE/CVF Int Conf Comput Vis (ICCV), pp 4643–4652

46. Ye L, Rochan M, Liu Z, Wang Y (2019) Cross-modal self-attention network for referring image
segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition,
pp 10502–10511

47. Yi K, Gan C, Li Y, Kohli P, Wu J, Torralba A, Tenenbaum JB (2019) Clevrer: Collision events for video
representation and reasoning. In: International conference on learning representations

48. Yu L, Lin Z, Shen X, Yang J, Lu X, Bansal M, Berg TL (2018) Mattnet: Modular attention network for
referring expression comprehension. In: Proceedings of the IEEE conference on computer vision and
pattern recognition, pp 1307–1315

49. Yu L, Poirson P, Yang S, Berg AC, Berg TL (2016) Modeling context in referring expressions. In:
European conference on computer vision, pp 69–85. Springer

50. Yu L, Tan H, Bansal M, Berg TL (2017) A joint speaker-listener-reinforcer model for referring
expressions. In: Proceedings of the IEEE conference on computer vision and pattern recognition,
pp 7282–7290

51. Zhang C, Li W, Ouyang W, Wang Q, Kim WS, Hong S (2019) Referring expression comprehension
with semantic visual relationship and word mapping. In: Proceedings of the 27th ACM International
Conference on Multimedia, MM ’19, pp 1258–1266. Association for Computing Machinery, Nice,
France

52. Zhu Y, Kiros R, Zemel R, Salakhutdinov R, Urtasun R, Torralba A, Fidler S (2015) Aligning books and
movies: Towards story-like visual explanations by watching movies and reading books. In: Proceedings
of the 2015 IEEE international conference on computer vision (ICCV), ICCV ’15, pp 19–27. IEEE
Computer Society, USA. https://doi.org/10.1109/ICCV.2015.11

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

4437Multimedia Tools and Applications (2023) 82:4419–4438

https://doi.org/10.1109/ICCV.2015.11


Affiliations

Miriam Bellver1 ·Carles Ventura2 ·Carina Silberer3 · Ioannis Kazakos4 ·
Jordi Torres1 ·Xavier Giro-i-Nieto5,6

Miriam Bellver
miriam.bellver@bsc.es

Carina Silberer
carina.silberer@ims.uni-stuttgart.de

Ioannis Kazakos
edem010@mail.ntua.gr

Jordi Torres
jordi.torres@bsc.es

Xavier Giro-i-Nieto
xavier.giro@upc.edu

1 Barcelona Supercomputing Center (BSC), Barcelona, Spain
2 Universitat Oberta de Catalunya (UOC), Barcelona, Spain
3 Institute for NLP, University of Stuttgart, Stuttgart, Germany
4 National Technical University of Athens, Athens, Greece
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