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Summary
This paper proposes a set-membership state estimation method for Switched
Linear Parameter Varying (SLPV) systems subject to unknown but bounded
parametric uncertainties, disturbances and noises. A zonotopic outer approxi-
mation of the state estimation domain is computed at every time iteration. The
size of this zonotope is designed to be convergent and bounded by satisfying
P-radius-based and Average Dwell Time (ADT) conditions that are formulated in
the Linear Matrix Inequality (LMI) framework. An extension of the state estima-
tion method is presented to address the fault/disturbance estimation problem for
SLPV systems. By using the state augmentation technique, the fault/disturbance
estimation problem is transformed into a state estimation problem of the gen-
erated augmented descriptor switched LPV system. An application to vehicle
lateral dynamics fault estimation is used for assessment purposes. Simulation
results demonstrate the effectiveness of the proposed algorithm and highlight
its advantages over the existing methods.
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1 INTRODUCTION

In the last decades, state estimation for LPV systems has been widely studied and applied to feedback control1,2 and
diagnosis.3,4 However, when the LPV system operates in a wide operating range and with parameter variations, a single
LPV estimator often leads to conservative performance. Since the switched systems are able to describe a wide range
of complex and nonlinear behaviours, a reasonable approach to avoid this kind of problem is to use Switched Linear
Parameter Varying (SLPV) systems. In this case, the parameter region is divided into smaller subregions such that a series
of LPV subsystems are generated. Then, a local LPV estimator can be designed for each LPV subsystem. Theoretically,
better performance can be achieved due to the much greater design freedom provided by the switched systems framework.
Therefore, SLPV systems have attracted considerable attention for controller design,5,6 fault diagnosis7 and fault tolerant
control.8,9

Switched systems are an important class of hybrid systems, consisting of a family of subsystems and a switching
law. Regarding the stability problem of switched systems, important theoretical results have already been achieved using
a Common Lyapunov function to guarantee the stability under arbitrary switching,10 which usually leads to a conser-
vative result. To reduce the conservatism, Multiple Lyapunov functions are proposed for guaranteeing stability under
constrained switching with Dwell Time (DT) and Average Dwell Time (ADT).11 Besides, Multiple Fuzzy Lyapunov
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functions with ADT concept are employed by Ifqir et al.12 for stability analysis, with less conservative stability conditions
than conventional results.

Meanwhile, great efforts have also been devoted to state estimation and fault diagnosis problems of switched systems,
for example, the works of Ethabet et al.,13 Ifqir et al.,14 Du et al.15 and Li et al.16 In practice, some uncertainties, such
as unknown parameters, process disturbances or measurement noises, are inevitable for most systems. Hence, the state
estimation method needs to be robust against these uncertainties. One possibility is to consider set-based state estimation
approaches,17 where the modelling uncertainties are assumed to be unknown but bounded by a priori known bound.
In the literature, there are two categories: the one based on the interval observer and the other using a set-membership
approach. The interval observer design requires that the estimation error system matrix is Metzler.12 However, this con-
dition could be very restrictive, especially in the case of a switched interval observer design where the estimation error
dynamics should be stable and positive for each subsystem.14 As an alternative approach, the set-membership state esti-
mation18 aims to compute a parametrized Feasible Solution Set (FSS) that is consistent with measurement state sets and
uncertain state sets. Several types of sets have been proposed to implement set-membership state estimation approaches,
such as polytopes,19 ellipsoids,20 and zonotopes.21 As zonotopes provide efficient computation,22 a much more compact
representation23 and can effectively control and mitigate wrapping effect,24 the zonotopic set-membership approach has
been widely applied to state estimation25 and fault diagnosis.21,26,27

Regarding the recent studies about the set-membership state estimation problem for switched systems, Fei et al.28

proposed a zonotopic set-membership state estimator for switched systems subject to unknown but bounded disturbances.
They adopted P-radius-based criteria for decreasing the size of zonotopic intersection in each iteration and bounding
it when subsystems switch. However, the proposed ADT-based criterion leads to conservative estimation results. Ifqir
et al.29 proposed a new P-radius based criterion, which is proven to be a less complex solution with less conservative
performance, to reduce the size of the zonotopic intersection at each sample time. However, this work did not consider the
ADT switching when designing the switched estimator. For SLPV systems, state estimation design has been implemented
by interval observer, parameter identification and adaptive observer, for example, the works of Ifqir et al.,12 Rios et al.30

and Rotondo et al.31 To the best of our knowledge, no research related to the set-membership estimation for SLPV systems
can be found.

Fault estimation is a significant stage of fault diagnosis and an essential part for active fault tolerant control. In the
literature, there are two families of fault estimation approaches: one regards the fault vector as an unknown input,32

and the other treats the fault vector as an auxiliary state by means of an augmentation technique.33,34 Regarding the
second family, with the aid of the augmentation technique, the nominal system can be rewritten as an augmented sys-
tem. Then, the fault estimation problem is transformed into a state estimation problem. Therefore, most existing state
estimation approaches can be promoted to fault estimation using this approach. Due to its convenience and effective-
ness in estimating the fault vector, quite a lot of results using the augmentation technique performing fault estimation
have been published for LTI systems,34 LPV systems,33,35 Takagi-Sugeno fuzzy systems.36,37 In particular, Zhou et al.35

proposed a zonotopic set-membership estimator of LPV systems for actuator and sensor faults estimation and used
a conventional online F-norm based method to obtain the observer gain. As we know, such online observer gain is
obtained by minimizing F-norm at each instant, thus, convergence of the estimation is not guaranteed. Besides, the
considered actuator and sensor faults in this work are performed using the same fault vector, which is usually rare in
real situations.

Inspired by the aforementioned discussions, the aim of this paper is to propose a zonotopic set-membership state
estimation method for discrete-time SLPV systems for the first time, and extend this state estimation method to
fault/disturbance estimation with the augmentation technique, as depicted by Figure 1. Moreover, unknown but bounded
parametric uncertainty, disturbance and noises are considered. The estimator correction matrix design is formulated as an
optimization problem in terms of Linear Matrix Inequalities (LMIs) using a less conservative mode-dependent P-radius
minimization criterion and ADT switching constraint. The objective is to find admissible switching signals such that the
designed estimator is convergent and stable.

The main contributions of this paper are as follows: (1) This paper develops the set-membership state estimation
for SLPV systems subject to unmeasurable but bounded scheduling parameters, and bounded disturbance and noises.
(2) Compared with the earlier work,28 less conservative P-radius based criteria with ADT switching are proposed for
the convergence and stability of the state estimator. (3) By considering the fault/disturbance vector as an auxiliary state,
the proposed state estimation method can be further applied to actuator/sensor fault estimation or input disturbance
estimation, which provides a broader application scope. (4) Different from the work,35 this paper offers an offline P-radius
based approach to compute the correction matrix, which could additionally guarantee the convergence of the estimator.
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F I G U R E 1 Structure of state estimation for SLPV systems.

This paper is organized as: Some preliminary results including definitions, properties and lemmas that will be used
in this paper are addressed in Section 2. The problem statement is formulated in Section 3. In Section 4, the details
of state estimation for SLPV systems including set-membership state estimation design and optimal switched polytopic
correction matrix computation are presented. Section 5 presents the extension of the proposed estimation method to
fault/disturbance estimation by using an augmented descriptor SLPV systems. Section 6 illustrates the effectiveness of the
proposed method through an application to vehicle lateral dynamics state and fault estimation. Finally, some conclusions
are drawn in Section 7.

Notation: In the following, Rn denotes the set of n-dimensional real numbers and⊕ denotes the Minkowski sum. The
matrices are written using capital letter, for example, A, the calligraphic notation is used for denoting sets, for example,
 , the interval matrices are denoted by capital letter with square brackets, for example, [], [x, x] is an interval with
lower bound x and upper bound x. F for s ∈ Rn, ||s|| denotes Euclidean vector norm, ||s||P =

√
sTPs denotes weighted

Euclidean vector norm, where P ≻ 0. For simplification, the time instant k + 1, k − 1 is presented by +, −, respectively,
i.e., x(k + 1) = x(+), x(k − 1) = x(−).

2 PRELIMINARIES

Definition 1. A unitary interval is a vector denoted by B = [−1, 1]. A unitary box in Rm, denoted by Bm, is a
box composed of m unitary intervals. Given a box M = ([a1, b1], … , [an, bn])T , mid(M) denotes its center and
diam(M) = (b1 − a1, … , bn − an)T .

Definition 2 (Zonotope38). A zonotope of order m in Rn is the translation by the center c ∈ Rn of the image
of an unitary hypercube of dimension m in Rn under a linear transformation R ∈ Rn×m, the zonotope  is
defined by:

 = ⟨c,R⟩ = c ⊕ RBm =
{

p + Rz ∶ z ∈ Bm}

Besides, the following properties related to zonotopes hold:

⟨c1,R1⟩⊕ ⟨c2,R2⟩ = ⟨c1 + c2, [R1,R2]⟩,
L ⊙ ⟨c,R⟩ = ⟨Lc,LR⟩,

where L is an arbitrary matrix of appropriate dimension.
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Definition 3 (P-radius38). Given a zonotope = ⟨c,R⟩ ⊂ Rn of order m and a weighting matrix P = PT ≻ 0,
the P-radius of  is defined by

l = max
x∈

||x − c||2
P = max

z∈Bm
||Rz||2

P

Definition 4 (ADT39). For a switching signal 𝜎(k) and any time instant K > k > 0, let N𝜎(k,K) denote the
switching times of 𝜎 during the interval [k,K]. If for any given N0 > 0 and 𝜏a > 0, we have

N𝜎(k,K) ≤ N0 +
K − k
𝜏a

,∀K ≥ k ≥ 0,

then N0 and 𝜏a are called the chatter bound and the Average Dwell Time (ADT) respectively. We can set N0 = 0
as commonly used in the literature.

Property 1 (Zonotope inclusion18). Consider a family of zonotopes represented by  = c ⊕ [M]Bm,
where c ∈ Rn is a real vector and [M] ∈ Rn×m is an interval matrix. A zonotope inclusion, denoted by⬦(Z), is
defined by

⬦(Z) = p⊕ [mid([M]) rs(diam([M])∕2)]

[
Bm

Bn

]

where rs(diam([M])∕2) is a diagonal matrix with diagonal elements rs(diam([M])∕2)ii =
∑m

j=1
|diam([M])∕2i,j|, i = 1, 2, … ,n. Under these definitions, Z ⊆ ⬦(Z).

Property 2 (State zonotope inclusion40). Given a state-space model x(k + 1) = Ax(k) + Bu(k), x(k) ∈ Rnx

is the state vector, u(k) ∈ Rnu is the input vector, A ∈ Rnx×nx and B ∈ Rnx×nu are the uncertain state-space
matrices belonging to the interval matrices [A] and [B], respectively. Considering x(k) ∈ k = ⟨ck,Rk⟩, the
state x(k + 1) is bounded by a zonotope k+1 = ⟨ck+1,Rk+1⟩ represented as

ck+1 = mid([A])cx,k +mid([B])uk,

Rk+1 =
[

seg(⬦([A]Rk))
diam([A])

2
ck

diam([B])
2

uk

]

where seg(⬦([A]Rk)) means computing the zonotope segment matrix with Property 1.

Property 3. Given an interval matrix [A] ∈ Rn×p and a real matrix B ∈ Rp×q, the center and the diameter of
their product [A]B are

mid([A]B) = (mid[A])B
diam([A]B) = (diam[A])|B|

where each element of |B| is formed with the absolute value of its corresponding element of B.41

Property 4. If M is positive semidefinite, then ATMA is positive semidefinite for any (possibly rectangular)
matrix A. If M is positive definite and A has full column rank, then ATMA is positive definite.

Property 5 (Zonotope intersection18). Given the zonotope  = ⟨cx,Rx⟩ ∈ Rn, the strip y =
{x ∈ Rn ∶ |Cx − d| ≤ 𝜎} and the vector 𝜆 ∈ Rn, the intersection between the zonotope and the strip is defined
as  ∩ y = ⟨c,R⟩, where c = cx + 𝜆(d − Ccx) and R = [(I − 𝜆C)Rx 𝜎𝜆].

Property 6 (Zonotope reduction42). A reduction operator, denoted ↓q,W , allows to reduce the number of
generators of a zonotope  to a fixed number n ≤ q < m, such that  = ⟨c,R⟩ ⊂

⟨
p, ↓q,W R

⟩
. A common pro-

cedure for implementing the operator ↓q,W is summarized as follows: Sort the column of segment matrix
R ∈ Rn×m in decreasing weighted vector norm || ⋅ ||W ,R =

[
r1, … , rj, … , rm

]
, ‖‖rj‖‖

2
W ≥

‖
‖rj+1‖‖

2
W ; Enclose the

set R>generated by the m − q + n smaller columns into a box (i.e., interval hull):
If m ≤ q, then ↓q,W R = R, Else

↓q,W R = [R>, rs(R<)] ∈ R
n×q
,R> =

[
r1, … , rq−n

]
,R< =

[
rq−n+1, … , rm

]

where r(R<) is a diagonal matrix with diagonal elements of rs(R<)i,i =
∑m

j=1|R<|i,j, i = 1, … ,n.
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Lemma 1 (43). Given matrices X ∈ Ra×b,Y ∈ Rb×c and Z ∈ Ra×c, if rank(Y ) = c, then the general solution of
the XY = Z is

X = ZY † + R
(

Ib − YY †)

where Y † = Y T(YY T)−1 is the Moore-Penrose inverse of matrix Y , R ∈ Ra×b is an arbitrary matrix.

3 PROBLEM STATEMENT

Consider the following switched discrete-time LPV system subject to parameter uncertainties and noises
{

x(+) = A𝜎(k)(𝜌(k), 𝜉(k))x(k) + B𝜎(k)(𝜌(k), 𝜉(k))u(k) + Eww(k)
y(k) = Cx(k) + Evv(k)

, (1)

where x ∈ Rnx is the state, u ∈ Rnu is the control input, y ∈ R
ny is the measured output. 𝜎(k) ∶ R+ →  = {1, 2, … , I} is a

known switching signal, satisfying the ADT switching scheme,44 assumed to be online available, where I denotes the num-
ber of subsystems. We employ a sequence k1, k2 … kl, kl+1, … , kN𝜎(k0,K) to represent the switching instants on the interval
[
k0,K), where k0 = 0 denotes the initial time, kl denotes the lth switching instant and the active ith subsystem (𝜎(k) = i)

when k ∈
[
kl, kl+1). A𝜎(k)(𝜌(k), 𝜉(k)) ∈ Rnx×nx and B𝜎(k)(𝜌(k), 𝜉(k)) ∈ Rnx×nu are unknown parametric matrices depending

respectively on the measurable and unmeasurable scheduling vectors 𝜌 ∈ Rnr and 𝜉 ∈ Rns . Ew ∈ Rnx×nw , Ev ∈ R
ny×nv

and C ∈ R
ny×nx are constant matrices. w(k) ∈ Rnw and v(k) ∈ Rnv are the process and measurement noises, respectively,

assumed to be unknown but bounded by zonotopes, that is, w(k) ∈ =
⟨

0, Inw

⟩
, v(k) ∈  =

⟨
0, Inv

⟩
, where Inw ∈ Rnw×nw

and Inv ∈ Rnv×nv denote the identity matrices. It is assumed that the unknown scheduling vector 𝜉(k) is composed by a
priori known constant nominal value 𝜉0 which is affected by an unknown uncertainty Δ𝜉(k) such that

𝜉(k) = 𝜉0 + Δ𝜉(k). (2)

Therefore, the state matrices can be written as a nominal part plus an uncertain part based on (2) as:

A𝜎(k) (𝜌(k), 𝜉(k)) = A𝜎(k) (𝜌(k), 𝜉0) + ΔA𝜎(k) (𝜌(k),Δ𝜉(k)) ,
B𝜎(k) (𝜌(k), 𝜉(k)) = B𝜎(k) (𝜌(k), 𝜉0) + ΔB𝜎(k) (𝜌(k),Δ𝜉(k)) , (3)

For simplification, we denote the nominal part A𝜎(k) (𝜌(k), 𝜉0) and B𝜎(k) (𝜌(k), 𝜉0) by A𝜎(k) (𝜌(k)) and B𝜎(k) (𝜌(k)), respec-
tively. According to Reference 45, the uncertainties on system matrices caused by the uncertain parameter 𝜉(k) can be
approximated by an uncertain term E𝜃,𝜎(k) (𝜌(k)) 𝜃(k) as in (4),

ΔA𝜎(k) (𝜌(k),Δ𝜉(k)) x(k) + ΔB𝜎(k) (𝜌(k),Δ𝜉(k)) u(k) ≈ E𝜃,𝜎(k) (𝜌(k)) 𝜃(k), 𝜃(k) ∈ [−1, 1]n𝜃 = ⟨0, In𝜃⟩, (4)

where 𝜃(k) is an unknown but constant vector that represents the parametric uncertainty, and E𝜃,𝜎(k) (𝜌(k)) is the associated
non-empty distribution matrix of suitable dimensions that models the direction and scale of the parametric uncertainty.

In the sequel, the system (1) can be rewritten as:

{
x(+) = A𝜎(k) (𝜌(k)) x(k) + B𝜎(k) (𝜌(k))u(k) + E𝜃,𝜎(k) (𝜌(k)) 𝜃(k) + Eww(k)
y(k) = Cx(k) + Evv(k)

(5)

Furthermore, considering that variable 𝜌(k) is online measurable and setting it as the scheduling variable leads to the
following polytopic form of system (5):

⎧
⎪
⎨
⎪
⎩

x(+) =
∑J

j=1hj
𝜎(k) (𝜌(k))

(

Aj
𝜎(k)x(k) + Bj

𝜎(k)u(k) + Ej
𝜃,𝜎(k)𝜃(k)

)

+ Eww(k)

y(k) = Cx(k) + Evv(k)
(6)

Zh_sh
Highlight
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with

ΔAj
𝜎(k)(Δ𝜉)x(k) + ΔBj

𝜎(k)(Δ𝜉)u(k) ≈ Ej
𝜃,𝜎(k)𝜃(k) (7)

where Aj
𝜎(k), Bj

𝜎(k), and Ej
𝜃,𝜎(k) for j = 1, … , J are known constant matrices and hj

𝜎(k) (𝜌(k)) are the weighting function for
the jth sub-model depending on the time varying parameter 𝜌(k) that fulfills the following properties

J∑

j=1
hj
𝜎(k) (𝜌(k)) = 1, 0 ≤ hj

𝜎(k) (𝜌(k)) ≤ 1, ∀j = {1, … , J} (8)

In order to bound the mode-dependent uncertainty termΔAj
𝜎(k)(Δ𝜉)x(k) + ΔBj

𝜎(k)(Δ𝜉)u(k), the uncertain system matrices
are denoted by interval matrices, that is, ΔAj

𝜎(k)(Δ𝜉) ∈ [ΔAj
𝜎(k)], ΔBj

𝜎(k)(Δ𝜉) ∈ [ΔBj
𝜎(k)]. Besides, it is assumed that the

system states and input belong to the interval vectors [X] = [x, x] and [U] = [u,u], respectively, which can be represented
by the following zonotopic sets:

x(k) ∈  = ⟨px,Hx⟩, px = mid([X]),Hx = rs
(

diam([X])
2

)

u(k) ∈  = ⟨pu,Hu⟩, pu = mid([U]),Hu = rs
(

diam([U])
2

)

(9)

Thus, using Property 2, the uncertainty term can be described as follows:

ΔAj
𝜎(k)(Δ𝜉)x(k) + ΔBj

𝜎(k)(Δ𝜉)u(k) ∈ [ΔAj
𝜎(k)] ⊕ [ΔBj

𝜎(k)] = ⟨0,Ej
𝜃,𝜎(k)⟩ = ⟨0, [S1 S2 S3 S4]⟩ (10)

where

S1 = seg
(

⬦([ΔAj
𝜎(k)]Hx)

)

= rs
⎛
⎜
⎜
⎝

diam([ΔAj
𝜎(k)])

2

⎞
⎟
⎟
⎠

|Hx| (11a)

S2 = seg
(

⬦([ΔBj
𝜎(k)]Hu)

)

= rs
⎛
⎜
⎜
⎝

diam([ΔBj
𝜎(k)])

2

⎞
⎟
⎟
⎠

|Hu| (11b)

S3 =
diam([ΔAj

𝜎(k)])

2
px (11c)

S4 =
diam([ΔBj

𝜎(k)])

2
pu (11d)

Remark 1. It is worth noting that the intervals [X] and [U] may correspond to the theoretical maximum
bounds or physical limits in the case of real applications.

4 STATE ESTIMATION

In this section, we propose a set-membership state estimation approach for the SLPV system (1). This approach is based
on parameterized intersection zonotope, which can be implemented by the following algorithm (Algorithm 1).

Algorithm 1. Set-membership state estimation algorithm

1. Prediction Step: Given the SLPV system (5), compute the zonotopic uncertain state set ̄k = A𝜎(−)(𝜌(−))̂− ⊕
B𝜎(−)(𝜌(−))u− ⊕

∑J
j=1 hj

𝜎(−)E𝜃,𝜎(−)(𝜌(−))⊕ Ew , which bounds the set of predicted states.
2. Measurement Step: Compute the measurement state set yk by using the measurements yk.
3. Correction Step: Compute the outer approximation ̂k of the intersection between ̄k and yk .



ZHANG et al. 7

4.1 Set-membersip state estimation for SLPV system

The set-membership state estimation approach with zonotopes is now implemented by means of the following theorem.

Theorem 1. Given the switched discrete-time LPV system (5), let ̂k = ⟨ck,Rk⟩ ∈ Rnx be the zonotopic estimated
state, where ck ∈ Rnx and Rk ∈ Rnx×nr represent the center and generator matrix. Thus, ↓q,W Rk is the reduced
generator matrix that is computed based on the Property 6. Assume that the initial state x0 belongs to the set
̂0 = ⟨c0,R0⟩, the estimated state can be propagated as follows:

ck = ck + 𝜆𝜎(−)(𝜌(−))
(

yk − Cck
)

(12a)

Rk =
[(

Inx − 𝜆𝜎(−)(𝜌(−))C
)

Rk 𝜆𝜎(−)(𝜌(−))Ev

]

(12b)

with

ck = A𝜎(−)(𝜌(−))c− + B𝜎(−)(𝜌(−))u− (13a)

Rk =

[

A𝜎(−)(𝜌(−)) ↓q,W R−
J∑

j=1
hj
𝜎(−)(𝜌(−))E

j
𝜃,𝜎(−) Ew

]

(13b)

where
⟨

ck,Rk

⟩

represents the zonotopic set of predicted states.

Proof. Considering the SLPV system (5) with the inclusion x− ∈ ̂− = ⟨c−,R−⟩, the zonotopic predicted state
set can be computed as:

k = ⟨ck,Rk⟩ = A𝜎(−) (𝜌(−)) ⟨c−, ↓q,W R−⟩⊕ B𝜎(−) (𝜌(−)) ⟨u(k), 0⟩⊕ ⟨0,E𝜃,𝜎(−) (𝜌(−))⟩⊕ ⟨0,Ew⟩ (14)

Then, consider the following polytopic form:

E𝜃,𝜎(−)(𝜌(−)) =
J∑

j=1
hj
𝜎(−) (𝜌(−))Ej

𝜃,𝜎(−), (15)

where ck and Rk can be derived as in (13a,b).
In addition, the measurement state set yk is computed by considering current measurement yk as

yk =
{

x ∈ R
nx ∶ |Cx − yk| ≤ Ev

}
(16)

Thus, the estimated state ̂k can be obtained through an outer approximation of the intersection between
the zonotope (14) and the measurement state set (16). Based on the Property 5, the intersection zonotope is
parameterized with a switched parameter-dependent correction matrix 𝜆𝜎(−) (𝜌(−)) ∈ R

nx×ny , and given by:

̂k = ⟨ck,Rk⟩ = ⟨ck + 𝜆𝜎(−) (𝜌(−)) (yk − Cck), [(Inx − 𝜆𝜎(−) (𝜌(−))C)Rk 𝜆𝜎(−) (𝜌(−))Ev]⟩ (17)

Therefore, the estimated state (12a,b) is derived. ▪

4.2 Optimal switched polytopic correction matrix design

As the correction matrix (also known as observer gain) directly affects the estimation performance, this section aims to
find an optimal correction matrix 𝜆i(𝜌(−)) such that minimizing the effects of uncertainties and restricting the size of the
zonotopic state estimation set ̂k decreasing for all i ∈  and all k ≥ 0. According to Definition 3, the size of zonotopic
state estimation set ̂k is measured by mode-dependent Pi-radius as follows:

l𝜎(−)(k) = max
xk∈̂k

||xk − ck
(
𝜆𝜎(−) (𝜌(−))

)
||2

P𝜎(−)
= max

z∈Bnr
||Rk

(
𝜆𝜎(−) (𝜌(−))

)
z||2

P𝜎(−)
(18)

where P𝜎(−) = Pi ∈ Rnx×nx ≻ 0,∀i ∈  is the symmetric weighting matrix for the ith subsystem.
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As stated above, an optimal design of the correction matrix 𝜆𝜎(−)(𝜌(−)) is required to minimize the effects of uncertain-
ties and guarantee that the size of the zonotopic intersection is not increasing. In this context, the following conditions
are proposed to limit the size of ̂k while considering the switching signal.

Lemma 2. Given the switched system (5), if there exist scalars 𝜀𝜎(k) ∈ (0, 1) and 𝛾𝜎(k) associated with each
subsystem 𝜎(k) = i, constants 𝛼2 > 𝛼1 > 0 such that

∀𝜎(k) = i ∈ , 𝛼1Ωi(+) ≤ li(+) ≤ 𝛼2Ωi(+), (19)

li(+) ≤ 𝜀ili(k) + 𝛾i𝛿i (20)

where 𝛼1 = min eig(Pi), 𝛼2 = max eig(Pi), Ωi(k) = maxxk∈̂k
‖xk − ck (𝜆i (𝜌(−)))‖, 𝛿i is a positive switched con-

stant that represents the maximum influence of process disturbance, parametric uncertainty and measurement
noises as follows:

𝛿i = max
s1∈Bn𝜃

||E𝜃,i (𝜌(−)) s1||
2
2 + max

s2∈Bnx
||Ews2||

2
2 + max

s3∈Bny
||Evs3||

2
2. (21)

Then, the radius of the intersection zonotope ̂k is bounded and decreased for any switching signal with ADT

𝜏a > 𝜏
∗
a = − ln𝜇∕ ln(𝜀i), 𝜇 = 𝛼2∕𝛼1. (22)

Proof. Considering the inequality (20), we have

li(+) ≤ 𝜀ili(k) ≤ 𝜀ili(k) + 𝛾i𝛿i (23)

∀k − 1 ∈ [kl, kl+1), the ith subsystem is active, for all i, q ∈  × , i ≠ q, leading to

li(−) ≤ 𝜀
k−kl−1
i li(kl) ≤ 𝜀

k−kl−1
i

li(kl)
lq(kl)

lq(kl), (24)

where
li(kl) = max

xkl
∈̂kl

||xkl − ckl (𝜆i (𝜌(kl − 1)))||2
Pi
, (25)

lq(kl) = max
xkl
∈̂kl

||xkl − ckl

(
𝜆q (𝜌(kl − 1))

)
||2

Pq
. (26)

Since 𝛼1Inx ≤ Pi ≤ 𝛼2Inx , 𝛼1Inx ≤ Pq ≤ 𝛼2Inx , using condition (19), we have

𝛼1Ωi(kl) ≤ li(kl) ≤ 𝛼2Ωi(kl) (27)

𝛼1Ωq(kl) ≤ lq(kl) ≤ 𝛼2Ωq(kl) (28)

with
Ωi(kl) = max

xkl
∈̂kl

||xkl − ckl (𝜆i (𝜌(kl − 1)))||,

Ωq(kl) = max
xkl
∈̂kl

||xkl − ckl

(
𝜆q (𝜌(kl − 1))

)
||,

where the zonotope ̂kl and the centers ckl (𝜆i (𝜌(kl − 1))) and ckl

(
𝜆q (𝜌(kl − 1))

)
are shown schematically in

Figure 2.
As ckl (𝜆i (𝜌(kl − 1))) ≠ ckl

(
𝜆q (𝜌(kl − 1))

)
, it follows that

Ωi(kl) < Ωq(kl). (29)

Thus, inequality (24) becomes

li(−) ≤ 𝜀
k−kl−1
p

𝛼2Ωi(kl)
𝛼1Ωq(kl)

lq(kl) ≤ 𝜀
k−kl−1
p

𝛼2

𝛼1
lq(kl) (30)
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F I G U R E 2 Centers at switching instant.

At the switching time instant k − 1 = kl, it yields

li(kl) ≤ 𝜇lq(kl) (31)

where 𝜇 = 𝛼2
𝛼1
> 1. Therefore, the size of the intersection zonotope is decreasing for each subsystem, and

bounded when the subsystem switches, which ends the proof. ▪

If (20) holds, when k →∞, l∞ = 𝜀il∞ + 𝛾i𝛿i, it follows that

l∞ = 𝛾i
𝛿i

1 − 𝜀i
. (32)

Equation (32) shows the equality of minimizing the Pi-radius (18), for given 𝜀i and 𝛿i, and minimizing the attenuation
gain 𝛾i for all i ∈ . Then, the design of the parameter-dependent correction matrix 𝜆i(𝜌(k)) associated with each subsys-
tem involves solving a Multi-Objective Global Minimum Optimization problem with LMIs constraints according to the
following theorem.

Theorem 2. Inequality (19) and (20) hold, if there exist a matrix W j
i ∈ R

nx×ny , a positive definite matrix
Pj

i ∈ Rnx×nx , scalars 𝛾 > 0, 𝛾 j
i > 0 for given scalar 𝜀i ∈ (0, 1) that are obtained by solving the following LMI

optimization problem

min
Wi,Pi,𝛾i

𝛾

𝛾
j
i ≤ 𝛾 (33a)

𝛼1 < Pj
i < 𝛼2 (33b)

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝜀iPj
i ∗ ∗ ∗ ∗

0 𝛾
j
i E

T
𝜃,iE𝜃,i ∗ ∗ ∗

0 0 𝛾
j
i E

T
wEw ∗ ∗

0 0 0 𝛾
j
i E

T
v Ev ∗

(

Pj
i −W j

i C
)

Aj
i

(

Pj
i −W j

i C
)

Ej
𝜃,i

(

Pj
i −W j

i C
)

Ew W j
i Ev Pj

i

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

≻ 0 (33c)

where W j
i = Pj

i𝜆
j
i, 𝜆

j
i = Pj

i
−1

W j
i .

Then, the SMA estimator can estimate the zonotopic bound of the state for any switching signal with ADT
satisfying (22). Besides, the estimation error is convergent and bounded by (32).

Proof. For all 𝜎(k) = i ∈ , by denoting ẑ = [zT sT]T , s = [sT
1 sT

2 sT
3 ]

T , where z ∈ Bnr , s1 ∈ Bn𝜃 , s2 ∈
Bnx , s3 ∈ Bny , (20) can be rewritten as

max
ẑ∈Bnr+n𝜃+nx+ny

||R+(𝜆i(𝜌(k)))ẑ||2
Pi
≤ 𝜀imax

z∈Bnr
||Rk(𝜆i(𝜌(−)))z||2

Pi
+ 𝛾i

(

max
s1∈Bn𝜃

||E𝜃,i(𝜌(−))s1||
2
2 + max

s2∈Bnx
||Ews2||

2
2 + max

s3∈Bny
||Evs3||

2
2

)
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It follows that

max
ẑ∈Bnr+n𝜃+nx+ny

(||R+(𝜆i(𝜌(k)))ẑ||2
Pi
− 𝜀i||Rk(𝜆i(𝜌(−)))||2

Pi
− 𝛾i(||E𝜃,i(𝜌(−))s1||

2
2 + ||Ews2||

2
2 + ||Evs3||

2
2)) ≤ 0

which is equivalent to the following inequality:

ẑTR+(𝜆i(𝜌(k)))TPiR+(𝜆i(𝜌(k)))ẑ − 𝛾isTΛis − 𝜀izTRk(𝜆i(𝜌(−)))TPiRk(𝜆i(𝜌(−)))ẑ ≤ 0 (34)

where
Λi = diag

([

E𝜃,i(𝜌(−))TE𝜃,i(𝜌(−)) ET
wEw ET

v Ev

])

Recalling that

R+(𝜆i(𝜌(k)))ẑ = (Inx − 𝜆i(𝜌(−))C)Ai(𝜌(−))Rk(𝜆i(𝜌(−)))z
+ [(Inx − 𝜆i(𝜌(−))C)E𝜃,i(𝜌(−))(Inx − 𝜆i(𝜌(−))C)Ew𝜆i(𝜌(−))Ev]s, (35)

which allows to replace R+(𝜆i(𝜌(k)))ẑ in (34) with (35). Then, the following inequality (36) is derived,
[

Rk(𝜆i(𝜌(−)))z
s

]T[
Ai(𝜌(−))T(Inx − 𝜆i(𝜌(−))C)TPi(Inx − 𝜆i𝜌(−)C)Ai(𝜌(−)) − 𝜀iPi ∗

ZiPi(Inx − 𝜆i(𝜌(−))C)Ai(𝜌(−)) ZiPiZi − 𝛾iΛi

][
Rk(𝜆i(𝜌(−)))z

s

]

≤ 0

(36)

where

Zi =
⎡
⎢
⎢
⎢
⎣

(Inx − 𝜆i(𝜌(−))C)E𝜃,i
(Inx − 𝜆i(𝜌(−))C)Ew

𝜆i(𝜌(−))Ev

⎤
⎥
⎥
⎥
⎦

T

Since inequality (36) holds, it is equivalent to that the following inequality (37) holds.
[
𝜀iPi 0

0 𝛾iΛi

]

−

[
((Inx − 𝜆i(𝜌(−))C)Ai(𝜌(−)))TPi

ZiPi

]

P−1
i

[
((Inx − 𝜆i(𝜌(−))C)Ai(𝜌(−)))TPi

ZiPi

]T

≻ 0 (37)

With the application of Schur complement, (37) can be rewritten as (38).

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝜀iPi ∗ ∗ ∗ ∗
0 𝛾iE𝜃,i(𝜌(−))TE𝜃,i(𝜌(k)) ∗ ∗ ∗
0 0 𝛾iET

wEw ∗ ∗
0 0 0 𝛾iET

v Ev ∗
Pi((Inx − 𝜆i(𝜌(−))C)Ai(𝜌(−))) Pi((Inx − 𝜆i(𝜌(−))C)E𝜃,i(𝜌(−))) Pi((Inx − 𝜆i(𝜌(−))C)Ew) Pi(𝜆i(𝜌(−))Ev) Pi

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

≻ 0

(38)

Since Ai (𝜌(−)), Bi (𝜌(−)), 𝜆i(𝜌(−)) and E𝜃,i(𝜌(−)) are parameter-dependent, considering the following polytopic
form,

Ai (𝜌(−)) =
J∑

j=1
hj

i (𝜌(−))Aj
i,

Bi(𝜌(−)) =
J∑

j=1
hj

i (𝜌(−))Bj
i,

E𝜃,i(𝜌(−)) =
J∑

j=1
hj

i (𝜌(−))Ej
𝜃,i,

𝜆i(𝜌(−)) =
J∑

j=1
hj

i (𝜌(−)) 𝜆
j
i, (39)
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the following inequality holds for all vertices ∀j ∈ J:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝜀iPj
i ∗ ∗ ∗ ∗

0 𝛾
j
i E

j
𝜃,i

T
Ej
𝜃,i ∗ ∗ ∗

0 0 𝛾
j
i E

TE ∗ ∗
0 0 0 𝛾

j
i F

TF ∗
Pj

i

((

Inx − 𝜆
j
i

)

C
)

Aj
i

)

Pj
i

((

Inx − 𝜆
j
iC

)

Ej
𝜃,i Pj

i

((

Inx − 𝜆
j
iC

)

E
)

Pj
i

(

𝜆
j
i

)

F) Pj
i

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

≻ 0 (40)

It is worth noting that the parameters Pj
i and 𝛾 j

i are used in (40) to introduce more degrees of freedom and
consequently reduce the conservatism. Then, (33c) can be derived by applying W j

i = Pj
i𝜆

j
i, 𝜆

j
i = Pj

i
−1

W j
i . There-

fore, by minimizing the gain 𝛾i,∀i ∈ , the intersection zonotope ̂k can be made as tight as possible. In order
to solve this multi-objective optimization problem, one objective scalar 𝛾 is minimized while the others are
transformed into constraints 𝛾i ≤ 𝛾 . Hence, this complete the proof. ▪

5 EXTENSION TO FAULT/DISTURBANCE ESTIMATION

In this section, we extend the proposed set-membership state estimation to fault/disturbance estimation for the SLPV
system (5), in case of input disturbance, actuator fault or sensor fault, described as follows:

{
x(k + 1) = A𝜎(k)(𝜌(k))x(k) + B𝜎(k)(𝜌(k))u(k) + E𝜃,𝜎(k) (𝜌(k)) 𝜃(k) + Fafa(k)(𝜌(k)) + Eww(k)
y(k) = Cx(k) + Fsfs(k) + Evv(k)

, (41)

where fa ∈ R
nfa and fs ∈ R

nfs denote respectively the actuator fault/input disturbance and the sensor fault signal, Fa ∈
R

nx×nfa and Fs ∈ R
ny×nfs are corresponding matrices.

By means of a state augmentation technique, the system (41) is rewritten and the fault/disturbance vector is regarded
as an extra state. Therefore, the proposed set-membership state estimation can be applied to estimate the corresponding
fault/disturbance. In order to achieve fault/disturbance estimation, the following assumption is considered in this paper.

Assumption 1. The considered fault f (k), generally referring to fault/disturbance signal, is piecewise con-
stant or slow varying. Therefore, it is assumed that

f (k + 1) = f (k) + 𝛿, (42)

with known scalar 𝛿.

Remark 2. As the actuator fault and input disturbance behave similarly and are mathematically represented
the same, the following implementation method for actuator fault estimation or input disturbance estima-
tion is the same. Consequently, in order to avoid complexity and reduce the content space, we combine the
two scenarios together, denoting the actuator fault or the input disturbance by one variable fa. Besides, nf is
employed to generally represent the dimension of the fault/disturbance vector, where nf ∈ {nfa ,nfs}. In the
case of actuator fault estimation, nf = nfa .

5.1 Augmented descriptor SLPV system generation

In order to estimate the fault/disturbance vector fa(k) or fs(k), it is considered as an auxiliary state with the aid of an
augmentation technique. Take the actuator fault fa(k) for example, the auxiliary state is represented as:

x(k) =

[
x(k)
fa(k)

]

∈ R
nx , nx = nx + nf .
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Then, the system (41) is formulated as an augmented descriptor SLPV system constructed as follows:
{

Ex(k + 1) = Ā𝜎(k)(𝜌(k))x(k) + B𝜎(k)(𝜌(k))u(k) + Ē𝜃,𝜎(k)(𝜌(k))𝜃(k) + Ēww(k)
y(k) = Cx(k) + Evv(k)

(43)

where

E =

[
Inx −Fa

0 Inf

]

, A𝜎(k)(𝜌(k)) =

[
A𝜎(k)(𝜌(k)) 0

0 Inf

]

, B𝜎(k)(𝜌(k)) =

[
B𝜎(k)(𝜌(k))

0

]

,

E𝜃,𝜎(k)(𝜌(k)) =

[
E𝜃,𝜎(k)(𝜌(k))

0

]

, Ew =

[
Ew

𝛿

]

, C =
[

C 0
]

(44)

Remark 3. It is worth noting that when it comes to estimate the sensor fault fs(k), the corresponding auxiliary
state and system matrices are defined as:

x(k) =

[
x(k)
fs(k)

]

Ā𝜎(k)(𝜌(k)) =

[
A𝜎(k)(𝜌(k)) 0

0 Inf

]

, C =
[

C Fs

]

, E =

[
Inx 0
0 Inf

]

(45)

Lemma 3 (Observability46). The descriptor SLPV system (43) is C-observable if and only if rank[
zE − Ā𝜎(k)(𝜌(k))

C

]

= nx,∀z ∈ C, z finite and rank
[

E
C

]

= nx.

Remark 4. With observability premised, there is no theoretical issue of estimating multiple faults
simultaneously with the proposed method. In case of estimating actuator and sensor faults simultaneously, we
consider the augmented states as x(k) =

[
xT(k) f T

a (k) f T
s (k)

]T . However, the estimation performance would
decrease as auxiliary states increase. The ideal situation is to employ the proposed method for single-fault
estimation.

Therefore, the state estimation method proposed in the previous section is directly applicable as long as the augmented
system (43) is observable. For the newly generated augmented descriptor system (43), the problem of fault/disturbance
estimation is readily transformed into state estimation. Consequently, the proposed set-membership state estimation in
Section 4 for SLPV systems is extended to the descriptor SLPV systems.

5.2 Set-membership state estimation for augmented descriptor SLPV system

In what follows, the set-membership state estimation approach for the augmented descriptor SLPV system (43) is pre-
sented. The implementation is based on computing the outer approximation ̂k of the intersection between the predicted
state set k and the measurement state set yk , which is given below.

Theorem 3. Given augmented switched discrete-time LPV system (43), let ̂k = ⟨ck,Rk⟩ ∈ Rnx be the zonotopic
estimated state, where ck ∈ Rnx and Rk ∈ R

nx×nRk represent the center and shape matrix. Assume that the initial
state x0 belongs to the set ̂0 = ⟨c0,R0⟩, the estimated state can be propagated as follows:

ck = ck + 𝜆𝜎(−)(𝜌(−))
(

y(k) − Cck

)

(46a)

Rk =
[(

Inx − 𝜆𝜎(−)(𝜌(−))C
)

Rk 𝜆𝜎(−)(𝜌(−))Ev

]

(46b)

with
ck = TĀ𝜎(−)(𝜌(−))c− + TB𝜎(−)(𝜌(−))u(−) + Ny(k)) (47a)

Rk =
[

TĀ𝜎(−)(𝜌(−)) ↓q,W R−
∑J

j=1hj
𝜎(−)(𝜌(−))TĒj

𝜃,𝜎(−) TĒw NEv

]

(47b)

where
⟨

ck,Rk

⟩

= k represents the zonotopic set of predicted states, 𝜆𝜎(𝜌(k)) is the correction matrix, T ∈ Rnx×nx

and N ∈ R
nx×ny are constant matrices designed to satisfy

TE + NC = Inx (48)
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According to Lemma 1, the general solution of (48) is given by:

T = Ψ†a1 + S
(

Inx − ΨΨ
†)a1,

N = Ψ†a2 + S
(

Inx − ΨΨ
†)a2, (49)

with Ψ =
[

E
C

]

, a1 =
[

Inx
0

]

and a2 =
[

0
Inf

]

.

Proof. Given a pair of matrices T and N satisfying (48), for system (43), we have

x(k) =
(

TE + NC
)

x(k) = TĀ𝜎(−)(𝜌(−))x(−) + TB𝜎(−)(𝜌(−))u(−) + TĒ𝜃,𝜎(−)(𝜌(−))𝜃(−) + Ny(k)

+ TĒww(−) − NEvv(k) (50)

By considering the inclusion x(−) ∈ ̂− = ⟨c−,R−⟩ ⊆ ⟨c−, ↓q,W R−⟩, and the polytopic form (15), the zonotopic
predicted states set can be computed as:

k = TĀ𝜎(−)(𝜌(−))⟨c−,R−⟩⊕ ⟨TB𝜎(−)(𝜌(−))u(−), 0⟩⊕ ⟨Ny(k), 0⟩⊕

⟨

0,
J∑

j=1
hj
𝜎(−)(𝜌(−))TĒj

𝜃,𝜎(−)

⟩

⊕ ⟨0,TĒw⟩⊕ ⟨0,NEv⟩,

(51)
which can be represented as (47a,b).

Then, similar to the proof of Theorem 1, the estimated state ̂k can be obtained through an outer approx-
imation of the intersection between the zonotope (51) and the measurement state set yk , denoted by yk ={

x ∈ Rnx ∶ |
|
|
Cx(k) − y(k)||

|
≤ Ev

}

. Based on the Property 5, (46a,b) is obtained and the proof is complete. ▪

5.3 Optimal switched polytopic correction matrix design

Following the same methodology as in the previous section, the optimal design for 𝜆𝜎(−)(𝜌(−)) aims to measure the size
of zonotopic state estimation set ̂k, which is measured by mode-dependent Pi-radius as follows:

l𝜎(−)(k) = max
xk∈̂k

||xk − ck
(
𝜆𝜎(−) (𝜌(−))

)
||2

P𝜎(−)
= max

z∈Bnr
||Rk

(
𝜆𝜎(−) (𝜌(−))

)
z||2

P𝜎(−)
(52)

where P𝜎(−) = Pi,∀i ∈  is the weighting matrix for the ith subsystem. If there exist scalars 𝜀𝜎(k) ∈ (0, 1) and 𝛾𝜎(k) associated
with each subsystem 𝜎(k) = i, constants 𝛼2 > 𝛼1 > 0 such that

∀𝜎(k) = i ∈ , 𝛼1Ωi(+) ≤ li(+) ≤ 𝛼2Ωi(+), (53)

li(k + 1) ≤ 𝜀ili(k) + 𝛾i𝛿i (54)

where 𝛼1 = min eig(Pi), 𝛼2 = max eig(Pi),Ωi(k) = maxxk∈̂k
‖xk − ck (𝜆i (𝜌(−)))‖, 𝛿i is a positive switched constant that rep-

resents the maximum influence of process disturbance, parametric uncertainty and measurement noises as follows:

𝛿i = max
s1∈Bn𝜃

||Ē𝜃,i (𝜌(−)) s1||
2
2 + max

s2∈Bnx
||Ēws2||

2
2 + max

s3∈Bny
||Evs3||

2
2. (55)

Then, the radius of the intersection zonotope ̂k is convergent and stable for any switching signal with ADT

𝜏a > 𝜏
∗
a = − ln𝜇∕ ln(𝜀i), 𝜇 = 𝛼2∕𝛼1. (56)

Therefore, when k →∞, l∞ = 𝜀il∞ + 𝛾i𝛿i, it follows that l∞ = 𝛾i
𝛿i

1−𝜀i
, which reveals that ∀i ∈ , a smaller gain 𝛾i provides

a tighter information in terms of the effect of 𝜀i. This leads to solve the following optimization problem:

Theorem 4. Inequality (53) and (54) hold, if there exist a matrix W j
i ∈ R

nx×ny , a positive definite matrix Pj
i ∈

Rnx×nx , scalars 𝛾 > 0, 𝛾 j
i > 0 for given scalars 𝜀i ∈ (0, 1) such that the following LMI optimization problem holds
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min
Wj

i ,Y
j
i ,𝛾i

𝛾

𝛾
j
i ≤ 𝛾 (57a)

𝛼1 < Pj
i < 𝛼2 (57b)

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝜀iPj
i ∗ ∗ ∗ ∗ ∗

0 𝛾
j
i Ē

jT

𝜃,iĒ
j
𝜃,i ∗ ∗ ∗ ∗

0 0 𝛾
j
i Ē

T
wĒw ∗ ∗ ∗

0 0 0 𝛾
j
i E

T
v Ev ∗ ∗

0 0 0 0 0 ∗
(

Pj
i −W j

i Ci

)

TĀj
i

(

Pj
i −W j

i Ci

)

TĒj
𝜃,i

(

Pj
i −W j

i Ci

)

TĒw W j
i Ev

(

Pj
i −W j

i Ci

)

NEv Pj
i

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

≻ 0 (57c)

where W j
i = Pj

i𝜆
j
i 𝜆

j
i = Pj

i
−1

W j
i .

Proof. Let ẑ = [zT sT]T , s =
[
sT

1 sT
2 sT

3 sT
4
]T , where z ∈ Bnr , s1 ∈ Bn𝜃 , s2 ∈ Bnx , s3 ∈ Bny , s4 ∈ Bny , ∀𝜎(k) =

i ∈ , using (54) we have

max
ẑ∈Bnr+n𝜃+nx+2ny

||R+(𝜆i(𝜌(k)))ẑ||2
Pi
≤ 𝜀imax

z∈Bnr
||R−(𝜆i(𝜌(k)))z||2

Pi
+ 𝛾i(max

s1∈Bn𝜃
||Ē𝜃,i(𝜌(−))s1||

2
2 + max

s2∈Bnx
||Ēws2||

2
2 + max

s3∈Bny
||Evs3||

2
2).

It is equivalent to the following inequality:

max
ẑ
(ẑTR+(𝜆i(𝜌(k)))TPiR+(𝜆i(𝜌(k))) −

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝜀iRk(𝜆i(𝜌(−)))TPiRk(𝜆i(𝜌(−))) 0 0 0 0
0 𝛾iĒ𝜃,i(𝜌(−))TĒ𝜃,i(𝜌(−)) 0 0 0
0 0 𝛾iĒT

wĒw 0 0
0 0 0 𝛾iET

v Ev 0
0 0 0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

ẑ) ≺ 0

(58)

Replacing R+(𝜆i(𝜌(k)))ẑ in (58) by recalling R+(𝜆i(𝜌(k)))ẑ = Ziẑ, where

Zi =
[

(Inx − 𝜆i(𝜌(−))C)TĀi(𝜌(−)) (Inx − 𝜆i(𝜌(−))C)TĒ𝜃,i(𝜌(−)) (Inx − 𝜆i(𝜌(−))C)TĒw (Inx − 𝜆i(𝜌(−))C)NEv 𝜆i(𝜌(−))Ev

]

,

it leads to:

[
Rk(𝜆i(𝜌(−)))z

s

]T

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

ZT
i PiZi −

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝜀iPi 0 0 0 0
0 𝛾iĒ𝜃,i(𝜌(−))TĒ𝜃,i(𝜌(−)) 0 0 0
0 0 𝛾iĒT

wĒw 0 0
0 0 0 𝛾iET

v Ev 0
0 0 0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

[
Rk(𝜆i(𝜌(−)))z

s

]

≺ 0 (59)

Since inequality (59) holds, it is equivalent to that the following inequality (60) holds.

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝜀iPi 0 0 0 0
0 𝛾iĒ𝜃,i(𝜌(−))TĒ𝜃,i(𝜌(−)) 0 0 0
0 0 𝛾iĒT

wĒw 0 0
0 0 0 𝛾iET

v Ev 0
0 0 0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

− ZT
i PiZi ≻ 0 (60)
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With the application of Schur complement for (60), and considering polytopic form, the following inequality
holds for all vertices ∀j ∈ J:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝜀iP
j
i ∗ ∗ ∗ ∗ ∗

0 𝛾iĒ
jT

𝜃,iĒ
j
𝜃,i ∗ ∗ ∗ ∗

0 0 𝛾iĒT
wĒw ∗ ∗ ∗

0 0 0 𝛾iET
v Ev ∗ ∗

0 0 0 0 0 ∗
Pj

i

((

Inx
− 𝜆j

iC
)

TĀj
i Pj

i

((

Inx
− 𝜆j

iC
)

TĒj
𝜃,i Pj

i

((

Inx
− 𝜆j

i

)

C
)

NEv

)

Pj
i

((

Inx
− 𝜆j

iC
)

Ēw

)

Pj
i

(

𝜆
j
iEv

)

Pj
i

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

≻ 0 (61)

Here, we also employ the vertices Pj
i and 𝛾 j

i for more degrees of freedom. Then, (57c) can be derived by applying
W j

i = Pj
i𝜆

j
i, 𝜆

j
i = Pj

i
−1

W j
i . Therefore, by introducing (57a), the size of the intersection zonotope ̂k can be sought

as tight as possible. Hence, the proof is completed. ▪

With the set-membership state estimator for fault/disturbance estimation designed in Theorem 3 and the optimal
correction matrix in Theorem 4, we summarize the fault/disturbance estimation algorithm in Algorithm 2.

Algorithm 2. Fault/disturbance estimation algorithm for augmented SLPV system

Given the system matrices, S, 𝜀i, the system input, statesand the initial state bounded in x(t) ∈ [x, x], u(t) ∈ [u,u],
x0 ∈ ⟨c0,R0⟩;
Compute parameter uncertainty using (10);
Generate the augmented SLPV system (43);
Solve Equation∼(48) to obtain T and N;
Solve the optimization problem (57c) to obtain the optimal correction matrix 𝜆j

i;
for 1 < k < K do

Compute the predicted states zonotope ⟨c̄k, R̄k⟩ by using (47);
Compute the state estimation zonotope ⟨ck,Rk⟩ by using (46);
Obtain the fault estimation zonotope ⟨cf

k,R
f
k⟩ = [0 Inf ]⟨ck,Rk⟩ with its bounds f̂i(k) ∈

[

f
i
(k), f i(k)

]

, i = 1,… ,nf

with
f̂ (k) = cf

k,

f̂i(k) = cf
k(i),

f i(k) = f̂i(k) + rs
(

Rf
k

)

i,i
,

f
i
(k) = f̂i(k) − rs

(

Rf
k

)

i,i
,

ef (k) = f (k) − f̂ (k),
where ef (k) is the fault estimation error vector.

end for

6 CASE STUDY

In this section, the following vehicle lateral dynamic model is employed to demonstrate the effectiveness of the proposed
estimation approach

[
𝛽̇

𝜓̇

]

=
⎡
⎢
⎢
⎣

− cf+cr

mvx

cr lr−cf lf

mv2
x
− 1

cr lr−cf lf

Iz
−

cr l2
r+cf l2

f

Izvx

⎤
⎥
⎥
⎦

[
𝛽

𝜓

]

+
⎡
⎢
⎢
⎣

cf

mvx
cf lf

Iz

⎤
⎥
⎥
⎦

𝛿f (62)

where the system states 𝛽 and 𝜓 denote the sideslip angle and yaw rate; input 𝛿f denotes the steering angle; the longitudi-
nal velocity vx and the cornering stiffness cf , cr are selected as the measurable and unmeasurable but bounded scheduling
variables respectively. It is worth noting that the cornering stiffness parameters cf and cr are not measurable and vary with
the surface friction. For a more precise model, readjustment variables Δcr and Δcf are taken into account to correct the
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T A B L E 1 System parameter.

Parameter Description Value Unit

m Mass 1600 kg

Iz Yaw moment 2454 kg ⋅m2

lf Distance from front axle to the center of gravity. 1 m

lr Distance from rear axle to the center of gravity. 1.44 m

cf Cornering stiffness of front tires 35,468 N∕rad

cr Cornering stiffness of rear tires 40,057 N∕rad

F I G U R E 3 Longitudinal velocity vx .

wheel cornering stiffness errors as: cf = cf 0 + Δcf and cr = cr0 + Δcr, where cf 0 and cr0 represent known nominal values,
and Δcr and Δcf are assumed to be unknown but bounded, satisfying |Δcr| ≤ 0.1cr0, |Δcf | ≤ 0.1cf 0. System parameters
and nominal values are described in Table 1. Given a sampling time T= 0.01s, a discrete-time LPV model of the system
(62), subject to parameter uncertainties and noises, can be obtained by Euler’s discretization method as follows:

{
x(+) = A(𝜌(k), 𝜉(k))x(k) + B(𝜌(k), 𝜉(k))u(k) + Eww(k)
y(k) = Cx(k) + Evv(k)

(63)

where

A(𝜌(k), 𝜉(k)) = Inx + T
⎡
⎢
⎢
⎣

− cf+cr

mvx

cr lr−cf lf

mv2
x
− 1

cr lr−cf lf

Iz
−

cr l2
r+cf l2

f

Izvx

⎤
⎥
⎥
⎦

, B(𝜌(k), 𝜉(k)) = T
⎡
⎢
⎢
⎣

cf

mvx
cf lf

Iz

⎤
⎥
⎥
⎦

.

In the present study, the following simulation data are used: the measurable scheduling variable 𝜌(k) = vx depicted in

Figure 3, the unmeasurable scheduling variable 𝜉(k) =
[
cr cf

]T , C = [0 1], Ew =
[

0.001 0
0 0.02

]

, Ev = 0.03, and the sys-

tem disturbances w and measurement noise v are random white noise bounded in zonotopes: w ∈ = ⟨0, I2⟩, v ∈  =
⟨0, I1⟩.

Considering the characteristic of the measured longitudinal velocity vx in Figure 3, the whole parameter space can be
divided into three sub-regions according to the following switching rule:

𝜎(k) =
⎧
⎪
⎨
⎪
⎩

1 if 9m ⋅ s−1 < vx ≤ 13.4m ⋅ s−1

2 if 13.4m ⋅ s−1 < vx ≤ 16.5m ⋅ s−1

3 if 16.5m ⋅ s−1 < vx ≤ 20m ⋅ s−1

(64)

and three local models are obtained with the considered switching law as shown in Figure 4. Furthermore, to decouple
the uncertainties on the parameter 𝜉(k), the system matrices can be represented as (3). Approximating the uncertainties
on system matrices by an uncertain term E𝜃,𝜎(k)(𝜌(k))𝜃(k) and using the sector nonlinearity approach, a switched polytopic
LPV system with three subsystems and two submodels for each subsystem is derived and given as follows:

{
x(+) =

∑2
j=1hj

𝜎(k)(𝜌(k))(A
j
𝜎(k)x(k) + Bj

𝜎(k)u(k) + Ej
𝜃,𝜎(k)𝜃(k)) + Eww(k)

y(k) = Cx(k) + Evv(k)
(65)
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F I G U R E 4 Switching signal 𝜎(k).

F I G U R E 5 Set-membership estimation of side slip angle using proposed approach (red) and reference approach (orange).

F I G U R E 6 Set-membership estimation of yaw rate using proposed approach (red) and reference approach (orange).

where

A1
1 =

[
0.9648 −0.0092
0.0905 0.9640

]

, A2
1 =

[
0.9555 −0.0088
0.0905 0.9544

]

, B1
1 =

[
0.0165
0.1445

]

, B2
1 =

[
0.0209
0.1445

]

,

A1
2 =

[
0.9714 −0.0095
0.0905 0.9707

]

, A2
2 =

[
0.9648 −0.0092
0.0905 0.9640

]

, B1
2 =

[
0.0134
0.1445

]

, B2
2 =

[
0.0165
0.1445

]

,

A1
3 =

[
0.9763 −0.0096
0.0905 0.9757

]

, A2
3 =

[
0.9714 −0.0095
0.0905 0.9707

]

, B1
3 =

[
0.0111
0.1445

]

, B2
3 =

[
0.0134
0.1445

]

,

In this paper, the system states and input belong to the interval vectors [X(1)] = [−0.06, 0.06], [X(2)] = [−0.5, 0.4] and
[U] = [−0.14, 0.08]. Therefore, Ej

𝜃,𝜎(k) can be computed based on (10). Due to the space limitation, the details of matrix
Ej
𝜃,𝜎(k) are omitted.

6.1 Simulation 1: State estimation

By solving the LMI optimization problem (33) and selecting the scalar 𝜀i = 0.78, we can obtain the switched polytopic
correction matrices 𝜆j

𝜎(k) and the corresponding minimum ADT 𝜏∗a = 8.7985 through (22). Then, the actual trajectories
of the system states (black line) and the state-bounding intervals (red line) are depicted in Figures 5 and 6. Furthermore,
with the same parameter settings, a comparison is conducted using the SMA-based switched state estimator proposed in
Reference 28 for the system (5). As seen from the compared estimation results shown in Figures 5 and 6, the proposed
method allows to provide a more accurate bounded estimation of the vehicle state variables, thus less conservative.
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6.2 Simulation 2: Actuator fault estimation

In case of an actuator fault occurrence, a faulty switched polytopic LPV model, following (65), is given as follows:

{
x(+) =

∑2
j=1hj

𝜎(k)(𝜌(k))(A
j
𝜎(k)x(k) + Bj

𝜎(k)u(k) + Ej
𝜃,𝜎(k)𝜃(k)) + Fafa(k) + Eww(k)

y(k) = Cx(k) + Evv(k)
(66)

where Fa =
[

0.0185
0.1445

]

. To illustrate actuator fault estimation capability, two different faults are considered. An abrupt fault

fa1 and a time-varying fault fa2 are described as:

fa1(k) =

{
0 k < 6000
0.4 6000 ≤ k

(67)

fa2(k) =
⎧
⎪
⎨
⎪
⎩

0 k < 5000
0.6 ⋅ sin(0.001𝜋k) 5000 ≤ k ≤ 9000
0 9000 ≤ k

(68)

In order to implement the fault estimation process, an augmented SLPV system is generated as (43), where augmented
matrices are designed as (44). Since T, N and C satisfy the rank condition (48), by choosing the arbitrary matrix S as:

S =
⎡
⎢
⎢
⎢
⎣

0.1 0 0 0
0 0.1 0 0
0 0 0.1 0

⎤
⎥
⎥
⎥
⎦

,

the matrices T and N are solved using (49) as:

T =
⎡
⎢
⎢
⎢
⎣

1 −0.0013 0.0183
0 0.5443 0.0787
0 −0.0644 0.9907

⎤
⎥
⎥
⎥
⎦

, N =
⎡
⎢
⎢
⎢
⎣

0.0013
0.4557
0.0644

⎤
⎥
⎥
⎥
⎦

.

By solving the LMI optimization problem (57a–c) and selecting the scalar 𝜀i = 0.97, 𝜀i = 0.945, respectively for fa1 and
fa2, the switched polytopic correction matrices 𝜆j

𝜎(k) and the corresponding minimum ADT 𝜏∗a = 12.69, 𝜏∗a = 16.79 are
obtained, through (56). Then, simulation results of the actuator fault estimation and the estimation error are depicted
in Figures 7 and 8. For both abrupt and time-varying actuator faults, it can be seen that the proposed method is able to
estimate accurate bounds of the occurred faults.

(A) (B)

F I G U R E 7 Actuator fault estimation. (A) Estimation result of fa1 with 𝛿 = 0. (B) Estimation result of fa2 with 𝛿 = 0.002.
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(A) (B)

F I G U R E 8 Actuator fault estimation error. (A) Estimation error of fa1. (B) Estimation error of fa2.

Remark 5. When estimating the time-varying faults (see Figure 7B), there is a time delay between the estima-
tion and the actual fault. It results from the effects of fault variation. The delay phenomenon can be improved
by relaxing the selection of scalar 𝜀i, while the relaxation leads to a wider estimated bound. Therefore, it
requires a balance to guarantee both the punctual value and the estimated bound.

Furthermore, to assess the performance of the proposed method, we compare it with the Frobenius-norm (F-norm)
based fault estimation method for LPV systems proposed in Reference 35. The implementation of the F-norm method
is done in the case of one subsystem, that is, 𝜎(k) = 1, if 9m.s−1 < vx < 20m.s−1, where the other parameters are set
the same. Then, the comparison results of fault estimation for different actuator faults are shown in Figures 9 and 10. It
can be seen that these two methods provide similar estimation performance for constant fault (see Figures 9A and 10A),
while the proposed method provides a more accurate punctual value estimation for time-varying fault (see Figures 9B
and 10B) due to the adjustability of the proposed method as discussed in Remark 5. Furthermore, as the F-norm-based
method only minimizes the intersection for each current instant, it can not guarantee the convergence of the size of the
zonotopic state estimation set like the proposed method. Besides, the proposed method offers an offline way to compute
the correction matrix, while the F-norm-based method computes it with a complex online computation. In this context,
the proposed method is a better alternative to perform fault estimation in case of real-time applications.

6.3 Simulation 3: Sensor fault estimation

The scenario of sensor faults is considered in this subsection, (45) is employed to generate the corresponding augmented
SLPV system, with Fs = 1. For the simulation purpose, consider the sensor faults fs(k) described as follows:

fs1 (k) =

{
0 k < 7000
1 7000 ≤ k

, fs2(k) =

{
0 k < 8000
0.3cos(0.001𝜋k) 8000 ≤ k

(69)

From the given general solution (49), the arbitrary matrix S is chosen as:

S =
⎡
⎢
⎢
⎢
⎣

0.1 0 0 0
0 0.1 0 0
0 0 0.1 0

⎤
⎥
⎥
⎥
⎦

,

and two matrices T and N satisfying (48) are obtained and given as follows:

T =
⎡
⎢
⎢
⎢
⎣

1 0 0
0 0.70 −0.30
0 −0.30 0.70

⎤
⎥
⎥
⎥
⎦

, N =
⎡
⎢
⎢
⎢
⎣

0
0.30
0.30

⎤
⎥
⎥
⎥
⎦
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F I G U R E 9 Comparison of actuator fault estimation. (A) Estimation result of fa1. (B) Estimation result of fa2.

(A) (B)

F I G U R E 10 Comparison of actuator fault estimation error. (A) Estimation error of fa1. (B) Estimation error of fa2.

By solving the LMI optimization problem (57a–c) and selecting the scalar 𝜀i = 0.99, the switched polytopic correction
matrices 𝜆j

𝜎(k) and the corresponding minimum ADT 𝜏∗a = 11.1559 through (56) are obtained. Then, the simulation results
of the sensor faults estimation are depicted in Figures 11 and 12. It can be seen that the proposed method is effective for
different time-varying sensor faults and the estimated results provide satisfactory performance, including the punctual
value and the upper/lower bounds.
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(A) (B)

F I G U R E 11 Sensor fault estimation. (A) Estimation result of fs1. (B) Estimation result of fs2.

(A) (B)

F I G U R E 12 Sensor fault estimation error. (A) Estimation error of fs1. (B) Estimation error of fs2.

7 CONCLUSION

In this paper, a set-membership state estimation method for SLPV systems subject to unknown but bounded parametric
uncertainties, disturbances and noises is proposed using zonotopes. To guarantee a convergent and bounded estima-
tion result, the optimal correction matrix has been designed using P-radius and ADT-based conditions, formulated as
an LMI problem. With the less conservative conditions, the size of the state estimation bounds is smaller than the con-
ventional existing results. Besides, an extension of the proposed estimation method to fault/disturbance estimation is
presented. This extension allows to deal with actuator/sensor faults or input disturbances, by regarding them as an
auxiliary state. Finally, the proposed method has been tested in simulation using vehicle lateral dynamics. From the
state estimation simulation and comparison results, it was revealed that the proposed method is more accurate and
competitive. Regarding the extension for actuator/sensor faults estimation, the simulation results have shown the effec-
tiveness of the proposed method in the case of different types of faults. As future works, authors plan to apply the
proposed state and fault estimation method for Fault Tolerant Control design of SLPV systems with ground vehicles
applications.
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