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Abstract. State estimation of deformable objects such as textiles is notorious
difficult due to its extreme high dimensionality and complexity. Lack of data and
benchmarks is another challenge impeding progress in robotic cloth manipula-
tion. In this paper, we make a first attempt to solve the problem of semantic state
estimation through RGB-D data only in an end-to-end manner with the help of
deep neural networks. Since neural networks require large amounts of labeled
data, we introduce a novel Mujoco simulator to generate a large-scale fully an-
notated robotic textile manipulation dataset including bimanual actions. Finally,
we provide a set of baseline deep neural networks and benchmark them on the
problem of semantic state prediction on our proposed dataset.
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1 Introduction

Deformable objects can have diverse poses, which introduces the biggest challenge for
robotic perception and manipulation. This is mainly due to the high dimensionality
and complexity of the problem, which makes it non-trivial to detect and identify the
deformation type of the surface. In robotics, state estimation in a continuous cloth ma-
nipulation process is still an essential prerequisite for robot monitoring, learning, and
imitation.

The dominant approach for perception tasks in the past decade is the use of deep
learning techniques, which most of the time trained in an end-to-end fashion. However,
the main focus of such methods has been on rigid objects [1] and their contributions
are mainly around the action recognition spectrum rather than the classification. Also,
most recent works on the manipulation of garments heavily rely on a limited number
of simulated and/or real-world data samples, which are partially or fully restricted to
public use [2].

In order to solve the state estimation task in an end-to-end manner with the use of
deep learning, it is required to access a large scale dataset under a grasp manipulation
framework. Since data annotation is time-consuming and costly, it is preferred to be
done with the use of a simulator generating manipulation sequences that are close to
real world manipulations.
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Fig. 1. Seven different manipulations involving nine tasks and ten different states. Each row cor-
responds to a manipulation while the columns are selected states. The first column shows the
initial state in the simulation where the cloth is flat. The second column in the manipulations
corresponds always to a semi-lifted state with either one or two grippers with the exception of
the final row where the middle grasps results in the cloth being crumpled. In the third column
the first four rows and the last continue having the same state while the other two switched into
a semi-lifted crumpled state. The last column shows the end states for each manipulation, from
top to bottom: diagonally folded, the next two are sideways folded, lifted with two grippers,
lifted with one gripper, crumpled and middle grasping with two grippers.
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In this work, we aim to investigate and answer whether it is possible to semantically
classify states of continuous manipulations. Initially, a framework [3,4] was chosen as
the basis to define and generate the semantic states by introducing a novel concept of
semantic state representation which defines a unique deformation on the surface. To
encode each perceived manipulation, a sequence of such states was then generated.
Unlike other approaches which either disregard the presence of gripper [5] or are fo-
cused entirely on the manipulation through point grasping with a sole gripper [6], in this
framework the grasping state plays an important role in the detection and identification
of a semantic state.

Most simulators have been employed to solve various reinforcement learning tasks
by focusing around the control and the trajectories of the actions rather than the vision.
Several attempts have been made in the past for such tasks in order to simulate the
deformable dynamics. However, most of the tasks they perform are with one robotic
arm visible, or even if there are two manipulators, they are not visualized together [7].

In order to generate the data, we develop a garment manipulation simulator in Mu-
JoCo [8] with two Kinova arms as manipulators. Unlike previous approaches, we sim-
ulate the scene with a camera view covering the garment, the background and both
grippers. Furthermore, we generate scenarios which can provide sequences that a real
robot can perform in real world manipulation, i.e., the grippers can go out of the camera
field of view or occlude a portion of the garment features.

Once the simulated data is generated and annotated, we benchmark different deep
neural networks running in an end-to-end manner to solve the state estimation task.
To our knowledge, our approach is completely novel and thus it did not make sense
to create a neural network to perform this task but rather create baselines which are
performed by well-established and known deep learning models for images. However,
since the computational cost and resources that are needed to train the networks can be
from moderately to extremely high, in order to provide results that are easily accessible
and reproducible with limited resources, those baselines will be done with the use of
transfer learning and fine-tuning for already pretrained networks on other datasets.

To summarize our work contributes the following:

– We developed a simulator on MuJoCo for garment manipulation with two grippers
from the robot’s point of view and release the source code in order to encourage the
investigation and research of deformable object manipulation.

– We generated an RGB-D dataset and annotated the data according to a grasping
framework for deformable object manipulation and release it for public usage.

– We verify that under the current framework, the state estimation problem can be
solved in an end-to-end manner with the help of deep neural networks.

2 BACKGROUND AND RELATED WORK

2.1 Grasping Manipulation

To enable learning from human demonstrations or high-level task planning in the con-
text of cloth manipulation, scene state recognition is one of the challenging open issues.
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Recent learning-based solutions for cloth manipulation have represented the cloth
during a manipulation as the RGBD images of the cloth on the table, and they use Eu-
clidean distance between pixels to identify close or equal states [9,10,11,6,5]. Other
similar works use additional information from the robot, like in [12] that uses RGB
image plus the robot arm joints and grippers state or [13] that uses the RGB image and
robot arm joints. In [14] the state is represented as a 32x32x16 binary voxels, with 1
where there is cloth and 0 in empty voxels. In all these works, the scene state definition
does not include information of the interaction with the grasping agent or the environ-
ment. In other words, the basic scene state is the cloth when it is not touched by the
robot.

In [3] a framework is introduced to describe textile grasps based on the geometry
of the prehension agents, including extrinsic geometries from the environment. Later in
[4], we extended that framework to define a scene state with very basic cloth config-
uration semantic labels but including grasping state and environmental contacts. This
novel state definition leads to a much thinner task segmentation than previous works,
because every re-grasp, contact with the environment or change in cloth configuration
triggers a new segment. We believe this is necessary to approach complex tasks where
several re-grasps are needed before the cloth is fully released, to obtain simpler action
primitives that can be reused in different tasks and contexts, similarly as it was done for
rigid objects [15].

Simplified representations of scene states based on the contact interactions between
the hands, the object and the environment was used in the past in the context of ma-
nipulation of rigid objects [16], and then used for recognition, segmentation [17] and
learning manipulation actions to be executed by a robot [18].

2.2 Deformable Simulation and Data

Data-driven methods using deep learning techniques often require a substantial amount
of data. Most of the simulators that have been used were developed for the manip-
ulations of rigid objects, mostly due to the difficulties to simulate the deformable’s
dynamics during the manipulation task.

Recent work on the simulation of deformable objects has been done by developing
simulations on PyBullet [19] and with the use of neural networks they were able to
re-arrange rigid objects at first [20] with one gripper which was later extended to de-
formable manipulation [21]. Towel manipulation tasks have been simulated [12] but
they have reported issues with the simulator codebase such as instability. Assistive
Gym [22], which also uses PyBullet, has simulated collaborative robotics with humans
on various tasks which some included deformable objects.

SOFA [23] is another simulation framework which provides more realistic defor-
mations in comparisson to PyBullet and it has been used for dynamic cloth manipula-
tion [6] in reinforcement learning tasks.

More recently SoftGym [7] used Nvidia’s FleX simulator to perform manipula-
tion tasks on deformable objects which are modelled by objects in a particle and po-
sition based dynamical systems. While this work supported multiple manipulators at
each time, unlike MuJoCo it did not have the availability of various simulated grippers
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modelled after real world robots. SAPIEN [24] and ThreeDWorld [25] also included
deformables in their simulations but did not include tasks for their manipulation.

Table 1. Definition of the semantic states
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A few attempts have also been made to generate a dataset for manipulation tasks but
in a rather limited spectrum of actions and all of them did not include the grippers in
their input or generate entire continuous sequences of manipulations. State estimation
was performed by generating solely depth synthetic data of hanging garments [2] from
multi-view points and generating a large scale dataset which was used to train a neural
network. Another approach uses RGBD images to generate a mesh of a 3D deformable
object by the minimization of an energy function [26]. Unfortunately both those data
are unavailable to the public and/or limited in their use-cases.

3 Simulation of Garment Manipulation and Data Annotation

MoJoCo is the simulator of our choice and the focus has been on point grasp manipu-
lation actions which are described in [3]. Two Kinova arms were chosen over floating
grippers due to their more limited trajectories which are positional dependant and their
collision reaction with rigid objects such as the table. The deformable object that is
simulated is a towel.

3.1 Simulation

The cloth of the simulator is generated by a mesh of vertices which are in their own
turn 3D objects. The size of the cloth depends on the number of vertices and the length
of the edges. The downsize with this approach is edges’ lack of mass which allows
interactions between the gripper and the cloth possible only through the vertices.

A MoJoCo python interface was used along with openAI gym [27] in order to gener-
ate different simulated environments. The parameters which are needed to be specified
are the edges’ length and stiffness, the size and the mass of the vertices and finally
the garment’s and the gripper’s initial position. Those parameters are randomized un-
der some constrains which ensure the feasibility of the manipulation, i.e. the garment’s
initial position is within the gripper’s reach. Since our main objective is to study the dy-
namic deformations of the object during the manipulation, we bypass the need to model
a physical grasp and instead we substitute it with a fake one implemented as a binary
point grasp to manipulate the textile.

Six different environments were generated to manipulate the garment in nine dif-
ferent tasks. The environment choice is depended solely on the initial grasp and the
whether ending position of the garment’s manipulation. For a better clarification how
the tasks are grouped under specific environments:

One Hand Folding Sideways: Folding manipulation performed solely by one grip-
per. The goal state is achieved by transporting the corner point of the cloth of our choice
close to a proximity of the goal location which in this case is the opposite vertex. In or-
der to avoid deformations which would result for the cloth to crumple, speed constrains
are also used (see Fig. 1, third row).

One Hand Folding Diagonally: This environment is implemented to simulate di-
agonal folding of the cloth with one gripper in a manner to the previous task. The only
difference is that the goal location is the vertex which is located diagonally across the
grasping corner (see Fig. 1, first row).
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Fig. 2. The class distribution of the generated dataset. The class imbalance is resulted since several
manipulations share the same states

One Hand Lifting: This environment involves three tasks. The first task is always
to lift the cloth by grasping one corner. The goal is achieved by lifting it higher than the
diagonal distance of the cloth (Fig. 1, fifth row). Constrains are applied on the size of
the cloth since its diagonal needs to be smaller than the maximum height the kinova’s
gripper can reach. Following the lifting of the cloth the next two tasks can be performed.
First is to simple lower (Fig. 1, sixth row) the garment enough so a portion of it is in
contact with the table. The final task is to drop (Fig. 1, fourth and sixth row) the garment
which is done simply by releasing the gripper.

Two Hand Folding Sideways: Folding manipulation performed by two grippers.
Each gripper manipulates the cloth by grasping the corner of the cloth that is the closest
to it and transporting it to the opposite vertex (Fig. 1, second row)

Two Hand Lifting: This environment involves two tasks. The first task is always
to lift the garment be grasping the corner of the cloth that is the closest to each gripper
and transport them into a height that exceeds the length of the cloth (Fig. 1, fourth row).

Two Hand Middle Grasp: Uses two grippers and is focused on grasping one corner
with one gripper while the other is grasping some point in the middle of the adjusted
edge that is closer to the position of the camera. After grasping it the goal is to lift this
edge while part of the cloth remains in contact with table (Fig. 1, last row).

Each task runs for a limited number of simulated steps which can vary from task
to task before it resets to the initial state. At the start of each episode, the base of the
manipulators is initialized to a default position while the cloth and the grippers are
allocated randomly under some constrains. There are no deformations on the cloth.

3.2 Data Generation and Labeling

Over the course of each simulation, RGB-D images and the mesh of the cloth are gener-
ated at each simulation step. The simulator automatically segments the captured data in
order to distinguish the cloth, the manipulator and the background. It also returns auto-
matically annotated states each of which is defined by following the grasping-centered
framework introduced in [3,4]. To increase the scale of the dataset, the simulator au-
tomatically generates various manipulation samples of the same type by altering the



8 Georgies Tzelepis et al.

Fig. 3. Confusion matrix for the ResNet50 predictions. It can be seen that the states which are the
most confusing are between the the crumpled semi-lifted with one gripper and flat semi-lifted
with one gripper states.

trajectory, initial position, speed of the manipulation and the size of the garment. In or-
der to generate a higher variety in the RGB-D data, initially domain randomization [28]
was applied on the simulation, however the coloring distortion was too high and thus the
results were poor even for only 3 states. Eventually, different textures where introduced
to contribute into a different scenery. Five textures of different colors were used for the
table (wood, brown, white, and black) and nine for the cloth (black, blue, brown,
green, orange, purple, red, white, and yellow).

Another set of parameters which also contributes to the data generation is the cam-
era position. The coordinates offset from the object to look at and the elevation, azimuth
and distance are also important during data collection. In order to gather RGB-D data
with more variety, a slight randomization is introduced as well.

By performing the nine continuous manipulation tasks, we were able to generate
and label ten states listed in Table 1

3.3 Deep Learning

To verify our approach we opted for the use deep neural networks for our state estima-
tion problem. Further to show that our approach can be replicated easily without the
use of lots of resources we verify our results with the use of transfer learning. However
to make sure that our comparisons are meaningful without bias we decided to use net-
works under some criteria: 1 they are trained on the same dataset, 2 they have the
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same input resolution for the images and finally 3 we only substituted the final layer
to fit our the number of states that are we want to estimate and train on this layer.

The networks of our choice were ResNet-50 [29], ResNeXt-50 [30] and EfficientNet
[31]. We discarded the choice of using Visual Transformers [32] despite being the state
of the art in classification we didn’t have meaningful results since it probably needs to
be retrained on our dataset and thus refrain from our initial approach of transfer learning
and fine-tuning.

4 EXPERIMENTS

As a dataset we generated one of 91380 samples and we did the training validation split
of 80 to 20 as seen in Table 3 while making sure we didn’t over-sampled from one set
over the other on a class. It is also noticeable that there is a class imbalance, see Fig.
2. However this is to be expected several manipulations share the same states and all of
them start from the initial state where the cloth is flat.

To simulate a more realistic approach from a robotic point of view, we added some
random permutation on the camera location of 10 degrees vertically and horizontally as
well as a slight noise on the camera’s distance from the cloth, on which the camera was
locked on.

Finally we experimented with several optimizer and schedulers and found out that
by using stochastic gradient descent with warm restarts we managed to boost our results

Table 2. Accuracy table

States ResNet50 ResNeXt50 EfficientNet-b0
Flat 0.9995 1.0000 1.0000
Middle grasping
with two grippers

1.0000 1.0000 1.0000

Flat semi-lifted
with one gripper

0.9922 0.9942 0.9920

Crumpled semi-lifted
with one gripper

0.9504 0.9430 0.9596

Crumpled 1.0000 1.0000 1.0000
Lifted with
one gripper

0.9679 0.9639 0.9759

Flat semi-lifted
with two grippers

0.9961 0.9954 0.9876

Lifted with
two grippers

0.9987 0.9933 1.0000

Diagonally
Folded

1.0000 1.0000 1.0000

Sideways
Folded

1.0000 1.0000 1.0000

Overall Accuracy 99.54% 99.51% 99.54%
State estimation accuracy per class and overall for each network.
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significantly. We used transfer learning and fine-tuning on pre-trained networks on Im-
agenet which are available through the PyTorch framework for only 20 epochs, since
we didn’t intend to train any of the feature layers. All 3 networks managed to achieve
over 99% accuracy on the validation set (see Table 2).

It can be observed from the confusion matrix in Fig. 3 that the most conflict cases
occur between the flat semi-lifted with one gripper, crumpled semi-lifted with one
gripper and lifted with one gripper. This is not surprising since the deformation while
they change from one state to another are very difficult to be perceived. More specifi-
cally the change from flat semi-lifted with one gripper to crumpled semi-lifted with
one gripper occurs when the distance between the adjacent corners of the the grasping
point becomes smaller than when the cloth was flat (Fig. 4). We hypothesize that the
wrong predictions between the crumpled semi-lifted with one gripper and lifted with
one gripper is the result of the camera angle which can make rather difficult without
the use of depth whether the cloth has any contact with the table or not (Fig. 4).

To explain this surprising high accuracy we need to examine the current limita-
tions of the simulator and the dataset. First, as it can be observed in Table 2 the net-
work had almost perfect predictions for states which are easy to perceive like the initial
state where the garment is flat, the flat semi-lifted with one gripper and the sideways
folded. However due to the class imbalance of our dataset those three states are almost
half of the dataset samples and thus contributing to the over all accuracy considerably
more than the crumpled semi-lifted with one gripper and lifted with one gripper
which have also the most conflict cases (see Fig.2 and Table 2). Second, the grippers
in the current simulation are clearly visible and it is easy to observe when they are
open or closed (Fig. 1), thus, making very clear the difference between flat and the rest
of the states that involve a closed gripper. Third, we discarded the simulation of dy-
namic grasping actions, i.e. the initial grasp of the cloth after the initial state, and thus,
the dataset does not include intermediate state changes which are hard to estimate cor-
rectly. Fourth, some short transitions are not represented in our formulation (and thus
not annotated), i.e. at the end of a folding manipulation, when the gripper releases the
garment from a certain height, the state is automatically labelled as sideways folded
even though the corners are still on the air and falling. Finally, it is also has to be taken
into account that the garments we generated at this stage are rather simple since they
are rectangular and noise free.

5 CONCLUSIONS

In this paper we presented a novel approach to solve the semantic state estimation prob-
lem for robotic cloth manipulation in an end-to-end manner. To achieve it we adopted
a grasping manipulation framework and was used as a baseline for automatic data la-
belling which were generated by our MuJoCo simulator while performing complex ma-
nipulation actions on a textile uni-manually and bi-manually. Then we fed those data in
pretrained neural networks on Imagnet and fine-tuned them.

The results we provided showed that indeed semantic state estimation is possible
to be investigated by data driven methods such as deep learning in combination with
a semantic classification that simplifies and groups the high number of complex states
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Fig. 4. Conflicted cases due to highly similarity between two states. The states on the left column
are Flat semi-lifted with one gripper and are predicted correctly while the minimal changes
in the next states that are occur in comparison to the right column images where not enough to
change the network’s prediction. The actual states on the right column are Crumpled semi-lifted
with one gripper and Lifted with one gripper.

that a garment can be. We managed to achieve over 95% accuracy in all three models
we have used for 10 different states with only the use of RGB data. The results are very
promising and induce to believe that the method can be valid also for real images. The
challenge in this case will be to obtain enough data to train the network that needs to be
obtained either by manual labelling or other means.

In the future we aim to improve the simulator by introducing a higher variety of
deformable shapes and attempt to solve the problem of state estimation with smaller
datasets and investigate what techniques can be used when the amount of data that are

Table 3. Data samples per class

Classes Dataset Train Val
Flat 21541 17233 4308
Flat semi-lifted with one gripper 20606 16485 4121
Sideways Folded 13387 10710 2677
Lifted with two grippers 7484 5987 1497
Diagonally Folded 6851 5481 1370
Flat semi-lifted with one gripper 6454 5163 1291
Middle grasping with two grippers 6214 4971 1243
Crumpled 3636 2909 727
Crumpled semi-lifted with one gripper 2717 2173 544
Lifted with one gripper 2490 1992 498

Data samples per class for the whole dataset and an 80-20 training-
validation split that used for our experiments.
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available are limited, like in the real world. Furthermore, we will generate a new dataset
which will include more grasps and more complex manipulations, improve our annota-
tion framework for more ambiguous states and generate data from multiple angles with
limited class imbalance. We believe and hope that our simulator, our data and most
importantly the method we used to approach the problem will be adopted by the cloth
manipulation community and trigger further contributions in deep learning and data
generation for textile investigation.
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