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Abstract: This paper studies the joint production and maintenance scheduling in microalgae
manufacturing systems comprised of multiple machines, which are subject to coupled production
demand agreements and operational maintenance constraints. Namely, there are some microal-
gae production demands to be met over a given horizon, and the maintenance of each microalgae
manufacturing unit must be done before a given deadline. Moreover, the number of units whose
maintenance can be done simultaneously over the same day is limited, and the units that undergo
maintenance cannot contribute to microalgae production during their maintenance day. To solve
the considered problem, we design a mixed-integer nonlinear model predictive controller, which
is implemented in two optimization stages. The former regards a mixed-integer model predictive
control problem, while the latter considers a nonlinear model predictive control problem. The
proposed approach allows us to decouple the mixed-integer and nonlinear parts of the whole
problem, and thus provides more flexibility on the optimization solvers that can be employed. In
addition, the first stage also evaluates the attainability of the demand agreements, and provides
a mechanism to minimally adjust such constraints so that their satisfaction can be guaranteed at
the second stage. The overall model predictive control approach is based on experimental data
collected at VAXA Technologies Ltd., and the effectiveness of the proposed method is validated
through numerical simulations including multiple manufacturing units and uncertainties.

Keywords: Model predictive control; microalgae manufacturing plant control; production
planning and control; maintenance scheduling; mixed-integer optimization.

1. INTRODUCTION

Due to the increasing environmental concerns and moti-
vated by the united nations (UN) seventeen sustainable
development goals (UN General Assembly, 2015), the mod-
ern industry has shown a significant interest in microalgae
as a promising alternative for sustainable food production.
For instance, VAXA Technologies Ltd. cultivates microal-
gae rich in protein and Omega-3 as a method to convert
clean energy into sustainable nutrition, while maintaining
a carbon negative profile and addressing the UN sustain-
able development challenges #2, 3, 9, 12−14. Furthermore,
recent researches have explored the potential of microalgae
not only for human and animal nutrition (Amorim et al.,
2021; Mahata et al., 2022), but also for the production
of pigments (Pagels et al., 2020), biofuels (Eldiehy et al.,
2022), and as wastewater treatment and CO2 biofixation
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mechanisms (Al-Jabri et al., 2021; Molazadeh et al., 2019),
among many other applications. As such, the automation
and optimization of microalgae industrial production is a
relevant research topic for control engineers.

The control and optimization of microalgae production im-
poses three main challenges. First, control-oriented models
for microalgae production optimization are difficult to
develop as complex bioprocesses are involved, e.g., the pho-
tosynthesis in photoautotrophic microalgae species (Ifrim
et al., 2022). Second, at the industrial level, microalgae
production is often subject to demand agreements that
must be satisfied. Hence, the underlying control algorithm
should determine the amount of microalgae to be har-
vested every day, so that the production demands can be
met over a given horizon. Third, as with other manufac-
turing systems, microalgae production units must undergo
recurrent maintenance and cleaning. This fact signifies an
additional layer of planning because maintenance/cleaning
operations often interfere with microalgae production in
the units that undergo maintenance, and thus affect the
satisfaction of the overall demand constraints. Based on
the previous discussion, in this paper we focus on the



second and third challenges, and we design a mixed-integer
model predictive controller to tackle them. Namely, we
design a model predictive control approach for the joint
production and maintenance management of microalgae
harvesting systems. Regarding the first challenge, on the
other hand, we use a high-level modeling approach based
on experimental data collected at VAXA Technologies
Ltd. Hence, we avoid the difficulties of complex low-level
modeling by employing high-level descriptive experimental
data.

Related to our research, the problem of joint production
and maintenance scheduling has been recently studied
from the general perspective of manufacturing systems.
For instance, Kang and Subramaniam (2018) propose an
integrated control model for the dynamic maintenance
and production of a two-machine manufacturing system
subject to usage deterioration. Similarly, Polotski et al.
(2019) study the problem of joint production and main-
tenance policy optimization in a single-machine hybrid
manufacturing-remanufacturing system subject to age-
dependent deterioration. Both of the previous works ex-
ploit ideas of dynamic programming and optimal control,
and the proposed control policies seek to minimize the
total production cost, which includes inventory, backlog,
and maintenance costs. In contrast, Rokhforoz and Fink
(2021) design a distributed model predictive controller for
the joint production and maintenance scheduling in multi-
machine manufacturing systems subject to usage deterio-
ration. Motivated by this later approach, in this paper we
also design a model predictive controller for the joint pro-
duction and maintenance optimization of multi-machine
microalgae harvesting systems. In contrast to Rokhforoz
and Fink (2021), however, we consider a centralized con-
trol approach but we include coupling constraints over
the maintenance of the multiple machines. Namely, we
impose that the maintenance of only a limited number of
machines can be done simultaneously over the same day,
which is often the case in actual industrial manufacturing
systems. This fact renders the underlying optimization
problem as a mixed-integer programming problem with
coupled constraints both on the production demands and
the maintenance schedule.

Based on the above, the main contributions of this paper
are as follows.

• First, we formulate the microalgae production and
maintenance control task as a mixed-integer nonlin-
ear programming problem within a model predictive
control scheme. Such a problem considers coupled de-
mand and maintenance constraints over a given time
horizon, and the underlying nonlinear model for the
microalgae growth process is based on experimental
data collected at VAXA Technologies Ltd.
• Second, we split the mixed-integer and nonlinear

parts of the aforementioned programming problem
into a modular two-stage optimization approach com-
prised of a mixed-integer quadratic programming
problem and a nonlinear programming problem. Since
general mixed-integer nonlinear programming prob-
lems are quite challenging to solve, the proposed
splitting allows us to have more flexibility on the
optimization solvers to be employed. In addition, the
first stage of the proposed approach allows us to esti-

mate whether the considered demand constraints are
attainable, and provides a mechanism to adjust the
demand agreements to guarantee their attainability
under a worst-case scenario.

• Third, we illustrate the performance of the proposed
two-stage optimization approach via numerical simu-
lations considering multiple microalgae manufactur-
ing units. Moreover, model uncertainties are included
in the simulations to further validate the proposed
approach.

The remainder of this paper is organized as follows.
First, in Section 2 we formally state the problem that is
studied in this paper. Second, in Section 3 we formulate
our proposed approach to solve the considered problem.
Then, in Section 4 we provide some numerical simulations
to illustrate the effectiveness of our proposed solution.
Finally, in Section 5 we conclude the paper and mention
some future directions of research.

2. PROBLEM STATEMENT

In this paper, we consider the problem of joint produc-
tion and maintenance optimization of a set of microalgae
manufacturing units, also referred to as miroalgae cultures
(as illustration, Fig. 1 shows an actual microalgae produc-
tion unit from VAXA Technologies Ltd). Each culture is
readily equipped with low-level control loops to keep the
temperature, pH, light, and nutrients at adequate levels
for microalgae growth. Hence, our focus is on a high-level
optimization task to decide the amount of biomass to be
harvested from each culture every day (so that certain
production demands are satisfied), and to schedule the
day for maintenance/cleaning of each culture (so that the
operational constraints of the system are met).

To formally model the problem, we let C = {1, 2, . . . , N}
denote the set of microalgae cultures, where N ∈ Z≥1 is
the total number of cultures, and we let xi ∈ R≥0 be the
biomass of microalgae (in kg) contained in culture i ∈ C.
Additionally, we let vi ∈ Z≥0 be an auxiliary variable
denoting the operational running-time (in days) of culture
i ∈ C since its last maintenance. Based on the above, the
day-to-day dynamics of every culture i ∈ C are given by

vi[k + 1] = (1− zi[k]) (vi[k] + 1) (1a)

xi[k + 1] = (1− zi[k]) (xi[k] + α (xi[k])− yi[k]) + xzi[k].
(1b)

Here, yi[k] ∈ R≥0 is the amount of biomass (in kg)
to be harvested from the culture i at day k ∈ Z≥0;
zi[k] ∈ {0, 1} is a binary variable that takes the value
1 if the maintenance of culture i is to be done during day
k, and takes the value 0 otherwise; x ∈ R>0 denotes the
initial biomass (in kg) introduced at each culture after its
maintenance; and α : R≥0 → R is a scalar-valued map
characterizing the daily growth rate of each culture as
a function of the biomass of microalgae available in the
culture. Namely, based on methodological suggestions and
experimental data collected at VAXA Technologies Ltd.
(see Fig. 2), we model α(·) as the quadratic polynomial
given by

α (xi) = −0.5305x2i + 0.4435xi − 0.0655. (2)

According to the model in (1), each culture i ∈ C is
characterized by two state variables, vi and xi, and is



subject to two control inputs, yi and zi. Furthermore, at
every day k, the system’s states and control inputs must
satisfy the constraints given by

∑

i∈C
(yi[k] + xi[k]zi[k]− xzi[k]) ≥ d[k] (3a)

∑

i∈C
zi[k] ≤ Nz (3b)

zi[k] ∈ {0, 1}, ∀i ∈ C (3c)

yi[k] ≥ 0, ∀i ∈ C (3d)

yi[k]zi[k] = 0, ∀i ∈ C (3e)

xi[k]− yi[k] ≥ x, ∀i ∈ C (3f)

xi[k] ≤ x, ∀i ∈ C (3g)

vi[k] ≥ vzi[k], ∀i ∈ C (3h)

vi[k] ≤ v, ∀i ∈ C. (3i)

Namely, the constraints in (3a) reflect the fact that a
microalgae production demand d[k] ∈ R≥0 must be met
for every day k (note that such a constraint presumes that
xi[k]−x biomass of culture i ∈ C is harvested when the cor-
responding maintenance/cleaning is performed, given that
x biomass is used to restart culture i after maintenance);
the constraints in (3b) establish that the maintenance of
at most Nz ∈ Z≥1 cultures can be done at the same
day, while the constraints in (3c) force the maintenance
decision variables to be binary; the constraints in (3d)
state that the harvested biomass must be non-negative;
the constraints in (3e) establish that no harvesting and
maintenance can be performed simultaneously; the con-
straints in (3f) ensure that the harvesting action keeps the
biomass in each culture always above the lower limit x,
while the constraints in (3g) seek to maintain the biomass
in each culture below the upper limit x ∈ R>x; finally, the
constraints in (3h) impose a minimum number of v ∈ Z≥0
days between successive maintenance operations for each
culture, whilst the constraints in (3i) ensure that no more
than v ∈ Z≥max{v,1} days can go by without performing
the maintenance of each culture.

Based on the model in (1) and the constraints in (3), the
goal is to compute the control inputs for each culture i ∈ C
following a model predictive control (MPC) approach over
a prediction horizon of Hp ∈ Z≥1 days. To formulate
the MPC problem, let us first introduce the following
notations. Namely, we let v = col (v1, v2, . . . , vN ), x =
col (x1, x2, . . . , xN ), y = col (y1, y2, . . . , yN ), and z =
col (z1, z2, . . . , zN ), be the corresponding column vector
concatenations of the overall state and control variables.
Moreover, we let

v[k] = col (v[k], v[k + 1], . . . , v[k +Hp])

x[k] = col (x[k], x[k + 1], . . . , x[k +Hp])

y[k] = col (y[k], y[k + 1], . . . , y[k +Hp − 1])

z[k] = col (z[k], z[k + 1], . . . , z[k +Hp − 1]) ,

be the corresponding sequences of state and control vari-
ables over Hp. Observe that while the state sequences
v[k] and x[k] belong to an N(Hp + 1)-dimensional space,
the control sequences y[k] and z[k] belong to an NHp-
dimensional space. Following the previous notation, in this
paper we consider the MPC problem defined next.

Definition 1. The MPC-related optimization problem to
be solved at day k is given by

Fig. 1. Photo of a microalgae production unit (culture)
from VAXA Technologies Ltd.
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Fig. 2. Experimental data collected at VAXA Technologies
Ltd. characterizing the daily biomass growth rate as
a function of the biomass available in the culture (the
data has been scaled for privacy preserving reasons).
The quadratic approximation fit is given in (2).

max
v[k],x[k],y[k],z[k]

Hp∑

τ=1

∑

i∈C
yi [k + τ ] , (4)

subject to the constraints in (1) and (3), the initial
conditions v[k] = v0 and x[k] = x0, and the constraints
given by

Hp−1∑

τ=0

zi[k + τ ] ≤ 1 + bHp/vc, ∀i ∈ C, (5)

where bHp/vc denotes the (floor) integer division of Hp

over v. Namely, the constraints in (5) restrict the maxi-
mum number of maintenance operations that can be sched-
uled for each culture over the prediction horizon. �

The optimization problem in Definition 1 comprises a
mixed-integer nonlinear programming (MINLP) problem
to be solved at each day k. Such a problem regards
the maximization of microalgae production over Hp and
its solution provides the control sequences regarding the
harvesting y[k] and maintenance z[k] decision variables.
Clearly, the parameters of such an MPC-related optimiza-
tion problem must satisfy the following condition.



Standing Assumption 1: The parameters N , Nz, v, v,
and v0, are such that there exists a feasible maintenance
schedule satisfying the constraints in (3b), (3h), and (3i),
for every day k. �

3. PROPOSED APPROACH

The MINLP problem in Definition 1 is a challenging
optimization task for three main reasons: i) the dy-
namics in (1) and the constraints in (3a) and (3e) in-
volve nonlinear terms over the optimization variables,
which render the problem as a nonlinear programming
problem; ii) the constraints in (3c) force the problem
to be of mixed-integer nature, which increases its diffi-
culty for larger numbers of cultures and prediction hori-
zons; and iii) given an arbitrary demand profile d[k] =
col (d[k], d[k + 1], . . . , d[k +Hp − 1]), there are no guaran-
tees that a feasible solution exists and it is not immediately
obvious how to check whether the given demands are
attainable. Hence, to handle these difficulties, we propose
a two-stage optimization approach as follows.

• First, we formulate a mixed-integer quadratic pro-
gramming (MIQP) problem to determine the mainte-
nance schedule and to adjust the production demands
to guarantee their attainability. Such an MIQP prob-
lem regards a (worst-case) linear approximation of the
quadratic growth rate in (2).
• Second, we formulate a nonlinear programming (NLP)

problem to compensate for the linear approxima-
tion of the first stage and to further maximize the
microalgae production while satisfying the adjusted
demands. Notice, however, that the NLP problem
of the second stage does not involve mixed-integer
optimization variables as the maintenance schedule is
determined in the first stage.

The main motivation behind the proposed two-stage ap-
proach is that many commercial optimization solvers are
better suited to solve MIQP problems than general MINLP
problems 1 . Hence, by splitting the mixed-integer and non-
linear parts of the problem into the two stages, we decouple
the main challenges of the MPC-related MINLP problem
of Definition 1. We now proceed to explain both stages.

3.1 First Optimization Stage: MIQP Problem

First, to handle the nonlinear constraints involving prod-
ucts of optimization variables, we introduce the change of
variables given by

Vi = vizi, ∀i ∈ C (6a)

Xi = xizi, ∀i ∈ C (6b)

Yi = yizi, ∀i ∈ C. (6c)

Based on (6), the constraints in (3a) can be rewritten as∑

i∈C
(yi[k] +Xi[k]− xzi[k]) ≥ d[k], (7)

while the constraints in (3e) can be rewritten as

Yi[k] = 0, ∀i ∈ C. (8)

Here, we highlight that the variables Yi can be eliminated
from the problem as they are always zero. Now, to effec-
tively contemplate the change of variables in (6) within

1 Some popular solvers well-suited for MIQP problems are CPLEX
and Gurobi (CPLEX, 2009; Gurobi Optimization, LLC, 2022).

the optimization problem, we employ the big-M method
(Bemporad and Morari, 1999, Section 2) and include the
additional constraints given by

Vi[k] ≥ 0, ∀i ∈ C (9a)

Vi[k] ≤ zi[k]MV , ∀i ∈ C (9b)

Vi[k] ≥ vi[k]− (1− zi[k])MV , ∀i ∈ C (9c)

Vi[k] ≤ vi[k] + (1− zi[k])MV , ∀i ∈ C (9d)

Xi[k] ≥ 0, ∀i ∈ C (9e)

Xi[k] ≤ zi[k]MX , ∀i ∈ C (9f)

Xi[k] ≥ xi[k]− (1− zi[k])MX , ∀i ∈ C (9g)

Xi[k] ≤ xi[k] + (1− zi[k])MX , ∀i ∈ C (9h)

0 ≥ yi[k]− (1− zi[k])MY , ∀i ∈ C (9i)

0 ≤ yi[k] + (1− zi[k])MY , ∀i ∈ C, (9j)

where (9i) and (9j) contemplate (8), and the big-M con-
stants are set to MV = v [due to (3i)], MX = x [due to
(3g)], and MY = x− x [due to (3f) and (3g)].

Second, to handle the nonlinearity of the model in (1)
caused by the quadratic growth rate in (2), we consider the
worst-case linear approximation of α(xi) over the interval
[x, x]. More precisely, we consider the map β : R≥0 → R
given by

β (xi) =
α(x)− α(x)

x− x (xi − x) + α (x) . (10)

Namely, β(xi) is the line that lies under α(xi) whenever
xi ∈ [x, x], and takes the same value as α(xi) at the
boundaries of the interval. Hence, we approximate α(xi) ≈
β(xi). Consequently, based on (6), (8), and (10), the model
in (1) can be rewritten as

vi[k + 1] = vi[k] + 1− Vi[k]− zi[k] (11a)

xi[k + 1] = (1 +m)xi[k]−mx+ α(x)− yi[k]

− (1 +m)Xi[k] + (mx− α(x) + x) zi[k], (11b)

for all i ∈ C, where m = (α(x)− α(x)) / (x− x).

Under the above formulations, the MINLP problem in
Definition 1 can be transformed into a mixed-integer linear
programming (MILP) problem where all the constraints
are now affine. Nevertheless, such an MILP problem might
still not have a solution under arbitrary production de-
mands (due to the infeasibility of (7)) and it is not immedi-
ately obvious how to check whether the given demands are
attainable. To handle such an issue, we formulate an MIQP
problem to determine the maximum attainable demands
as well as the maintenance schedule. To do so, we introduce
some auxiliary optimization variables ε[τ ] ∈ R≥0, for all
τ = k, k + 1, . . . , k +Hp − 1, and we set the notations

V = col (V1, V2, . . . , VN )

X = col (X1, X2, . . . , XN )

V[k] = col (V [k], V [k + 1], . . . , V [k +Hp − 1])

X[k] = col (X[k], X[k + 1], . . . , X[k +Hp − 1])

ε[k] = col (ε[k], ε[k + 1], . . . , ε[k +Hp − 1]) .

Based on the above, the resultant MIQP problem to be
solved is defined as follows.

Definition 2. The first-stage MPC-related MIQP problem
to be solved at day k is given by

min
v[k],x[k],y[k],z[k],V[k],X[k],ε[k]

ε[k]>Wε[k],

subject to the constraints in (3b)-(3d), (3f)-(3i), (5), (9),
and (11), the initial conditions v[k] = v0 and x[k] = x0,
and the constraints given by



∑

i∈C
(yi[k] +Xi[k]− xzi[k]) ≥ d[k]− ε[k] (12a)

ε[k] ≥ 0. (12b)

Here, W ∈ RHp×Hp

≥0 is a non-negative diagonal weighting
matrix that weights the importance of the production
demands over the prediction horizon. �

By solving the MIQP problem in Definition 2, one can
determine i) the optimal maintenance schedule z∗, and ii)
the minimal production demand adjustment ε∗ to guar-
antee the feasibility of (12a) under arbitrary production
demands. Moreover, given that such an MIQP problem
considers the worst-case linear approximation of the mi-
croalgae growth rate, the obtained adjusted demands are
also attainable when considering the quadratic growth rate
model in (2). This fact is important to guarantee the
feasibility of the second-stage optimization problem that
we introduce next.

3.2 Second Optimization Stage: NLP Problem

At the second optimization stage, we take the solutions z∗

and ε∗ determined by solving the MIQP problem of the
first stage, and we solve an MPC-related NLP problem
to compensate for the worst-case linear approximation of
the microalgae growth rate, and to further maximize the
production of microalgae. More formally, at the second
stage we consider the NLP problem defined next.

Definition 3. The second-stage MPC-related NLP prob-
lem to be solved at day k is given by

max
x[k],y[k]

Hp∑

τ=1

∑

i∈C
yi [k + τ ] ,

subject to the constraints in (1b), (3d)-(3g), and (12a),
the initial condition x[k] = x0, and the solutions given by
z[k] = z∗ and ε[k] = ε∗, where z∗ and ε∗ are those obtained
in the first stage. Therefore, z[k] and ε[k] are not taken as
optimization variables in the second stage, and thus it is
not necessary to consider the states v[k] nor the dynamics
in (1a) within the optimization (since with z[k] = z∗ fixed,
the dynamics in (1a) and (1b) are decoupled). �

For the sake of clarity, in Algorithm 1 we summarize the
proposed two-stage approach.

Algorithm 1 Proposed two-stage optimization approach

Require: Hp ∈ Z≥1
1: Compute z∗ and ε∗ by solving the MPC-related MIQP

problem of Definition 2.
2: Compute y∗ by solving the MPC-related NLP problem

of Definition 3.
3: Apply y∗[k] and z∗[k] to the system.
4: Repeat steps 1-3 for every day k.

Remark 1. The proposed two-stage approach in Algo-
rithm 1 offers various practical advantages. First, many
commercial optimization solvers are better suited to solve
MIQP problems than MINLP problems. Hence, by split-
ting the mixed-integer and nonlinear parts of the prob-
lem over the two stages, we allow for more flexibility on
the optimization solvers to be employed. Second, the ε∗

computed in the first stage provides an estimate of the

attainability of the production demands. Thus, microalgae
production companies as VAXA Technologies Ltd. can use
such information to better size their microalgae cultures
based on the minimum production demands that they
seek to achieve. Finally, given that the proposed approach
is modular, microalgae growth rates more complex (non-
necessarily quadratic) than (2) can be immediately con-
sidered in the NLP problem of the second stage without
increasing the complexity of the first stage. �

4. NUMERICAL SIMULATIONS

In this section, we provide some numerical simulations
to illustrate the effectiveness of the proposed approach.
Namely, we consider two scenarios, one with N = 4 and
Nz = 1 and one with N = 26 and Nz = 2. For both
cases we let Hp = 40 days, v = 28 days, v = 14 days,
x = 0.450 kg, and x = 0.250 kg. Moreover, without loss of
generality, in both of the corresponding MIQP problems
we let W be the Hp×Hp identity matrix. Based on these
parameters, we simulate 41 days of operation following
the receding horizon optimization approach depicted in
Algorithm 1. To add uncertainty to the simulation, we
take random initial conditions v0 and x0 for the first day,
and we add a random noise to the nominal growth rate
given by α(·). For each culture, such a noise is taken
according to the normal distribution N (0, 0.052). On the
other hand, regarding the production demand agreements
we consider the profile presented in Figs. 3 and 4. Such a
profile is taken according to some of the weekly production
demands at VAXA Technologies Ltd., yet the actual values
are randomized due to privacy preserving reasons. All
simulations are executed using Casadi (Andersson et al.,
2019) on an Intel Core i7-9750H CPU running at 2.60
GHz and with 16 GB of RAM. For the MIQP problem we
employ the ILOG CPLEX solver 12.80 (CPLEX, 2009),
whilst for the NLP problem we use the IPOPT solver
distributed with Casadi.

Figures 3 and 4 depict the performance of the proposed
approach under the considered scenarios. We highlight
that with N = 4 the production demand agreements
are unattainable. Yet, the first stage adjusts the demands
to guarantee the feasibility of the NLP problem of the
second stage. In contrast, with N = 26 the original
production demands are indeed satisfied. As comparison,
in the N = 4 scenario the average controller’s computing
time for each day is 12.47± 3.53 s, whereas in the N = 26
scenario it is 3.24 ± 0.60 s. This fact shows that having
attainable demands speeds up the computing time even
for a higher number of cultures. Hence the importance
of the proposed first stage as it provides information
on how to adjust the demands to be attainable. On
the other hand, Fig. 5 depicts the executed maintenance
operations in the case with N = 26. Clearly, it is verified
that all the maintenance-related constraints are satisfied.
Finally, it is worth to highlight that directly solving the
full MINLP problem of Definition 1 is quite challenging
even for a reduced number of cultures. In fact, for a
random instance of the simple scenario with N = 1
(for larger N the employed MINLP solver often fails to
find a solution and a good guess for the initial point is
required) and attainable production demand agreements,
our proposed two-stage approach takes 0.09 ± 0.01 s to
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Fig. 3. Total biomass production and demand agreements
over the simulation horizon for the case with N = 4.
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Fig. 4. Total biomass production and demand agreements
over the simulation horizon for the case with N = 26.
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Fig. 5. Maintenance operations (black squares) performed
over the simulation horizon for the case with N = 26.

achieve a solution, while solving the full MINLP problem
with the BONMIN solver distributed with Casadi takes
84.89±4.86 s (roughly 800 times slower than the proposed
approach). Besides, our proposed approach achieves a total
biomass production of 0.87 kg, whilst the MINLP one
produces 0.88 kg of microalgae. Thus, we only have a
1.14% drop on performance for the considered instance.

5. CONCLUDING REMARKS AND FUTURE WORK

In this paper, we have studied the problem of joint produc-
tion and maintenance scheduling for microalgae harvesting
systems. We have formulated the considered optimization
task as a mixed-integer nonlinear programming (MINLP)
problem within a model predictive control scheme, and we
have proposed a two-stage approach to split the MINLP
problem into an mixed-integer quadratic programming
problem and an nonlinear programming problem, so that
the mixed-integer and nonlinear parts of the whole op-
timization problem are decoupled. Future work should
explore distributed implementations of the proposed ap-
proach to further scale for larger systems.
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