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Abstract: In this paper an optimization-based solution to the collision avoidance challenge for
autonomous vehicles is proposed. The presented approach consists in an online motion planner
designed to define a feasible and efficient path which implicitly guarantees safety manoeuvres
in dynamic surroundings. The fact of considering moving obstacles inside the motion planner
increases the complexity of the problem while forces it to be executed more frequently as others.
To reduce its computational complexity, this approach proposes a two stages translation of the
commonly used non-linear optimization-based structure into a QP formulation which can be
easily solved. The first stage is based on the use of LPV matrices in the dynamic constraints
of the vehicle. The second stage consists in computing linear expressions by set propagation to
obtain the set of permitted inputs and reachable states which guarantee safety conditions.
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1. INTRODUCTION

Safety coordination of autonomous vehicles is a wide topic
with different aspects to be solved being the collision
avoidance one of the main challenges to guarantee safety.
According to this, a motion planner (from now on MP)
following the predominant lane of research, which is the
optimization-based solutions, has been designed. This con-
sists in formulating a mathematical expression to evaluate
the desired performance while the dynamical, safety and
physical, limitations of the system are considered as a set
of constraints to accomplish.

As detailed in the survey (Paden et al., 2016), many
disparate optimization-based approaches can be found in
the literature which use model-based movement predic-
tions to design the motion plan. Different formulations
and objectives have been presented, having all in common
the difficulty of skipping complex formulations to compute
the optimal solution with low computational cost. There-
fore, the majority of the solutions proposed are focused
on presenting approaches to simplify the problem or to
reduce the computational complexity to make possible the
implementation.

A very extended way of dealing with high computational
costs is to design motion planners which deal with the com-
plexity of the non-linearities reducing the computational
cost by delegating the obstacles avoidance to the motion
controllers (from now on MC). For example, Hegediis et al.
(2017) propose a non-linear formulation to find the optimal
path using a dynamical model of the vehicle, while propose
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to check collision avoidance with a higher-level supervisor
outside the optimization problem. Moreover, the authors
consider that the computational complexity is still signifi-
cant and remark that the real time execution is not viable
with nowadays technology.

Another common manner of reducing the computational
complexity is simplifying the expressions. One example of
that is the MP for racing vehicles presented in Caporale
et al. (2018). This solution uses dynamical models with a
formulation based on a trade-off between the curvature of
the path (to avoid slipping) and track length (to reach the
goal as fast as possible). To reduce the computational cost,
the authors propose to study the path as a sequence of
linear segments, while use Taylor expansion to simplify the
expression of the curvature. These kinds of approaches per-
mit the implementation but sacrifice the optimality. Addi-
tionally, this solution does not consider collision avoidance
inside the MP, leading it to a hypothetical external module
which provides the sufficient constraints to find a collision-
free path.

Other approaches, such as the MP proposed at Liu et al.
(2017), avoid the complexity of the problem using kine-
matic models. This work presents an interesting solution
based on a mixed integer problem to decide the most suit-
able manoeuvre selecting lanes. Once the lane is selected,
the potential field associated to the lane is computed to
avoid getting close to obstacles. Moreover, the collision
problem is addressed by approximating the vehicle and
the different obstacles as polyhedra establishing a set of
constraints to exclude solutions where polyhedra intersect.
It is important to remark that many MC use dynamical
reference, thus this methodology would be incompatible.
Even more interesting is the proposition presented in
(Scheffe et al., 2022), where the authors remark the need
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of reaching high update rates and propose approaching the
non-linear expression by convex approximations.
Meanwhile, the number of optimization-based solutions
which apply set-theory are becoming more and more fre-
quent. Between them, different approaches using differ-
ent techniques and objectives have been presented. The
approach presented in Danielson et al. (2020) computes
robust positive-invariant sets to define the subset of states
where it is safe to generate the MC reference. The so-
lution proposes a methodology to deal with disturbances
and parametric uncertainties. Even more interesting, the
solution can cope with dynamic obstacles by bounding the
time where the vehicle can transit between sets.

Also with set-theory, different approaches propose solu-
tions based on generating safety corridors or propagating
the states to define regions where safety is guaranteed for
every vehicle movement allowed. For example, Manzinger
et al. (2020) proposes a methodology to define corridors by
reachability analysis and integrate them inside the MP. To
reduce the computational complexity some assumptions
to achieve linear expressions for the kinematics aspects of
the vehicle are done. Also Schéfer et al. (2021) propose
a solution with similar objectives. The authors describe
a methodology to identify collision-free driving corridors
using reachability analysis. Once developed, they are ap-
proximated by polyhedra to reduce the complexity of the
solution for using them as constraints of the MP. The
authors validated their methodology combining it with
existing optimization-based MP.

Besides that, other propositions reduce the computational
cost without linearizing or simplifying the model by using
LPV matrices. For example, in Alcald et al. (2020a), the
non-linearities are embedded inside a linear model with
time-varying terms using an LPV state-space representa-
tion. By this way, the MP solves a problem where the
dynamic constraints of the vehicle are linear. However,
the MP can only deal with static obstacles by tightening
the boundaries of the states to avoid collisions. Those
techniques can be perfectly combined with tube-based so-
lutions as in Alcald et al. (2020c), where LPV matrices and
tubes are combined to solve a related problem associated
to the MC of an autonomous vehicle, highlighting the
utility that such a combination could have in the field of
motion planning.

On the basis of the aforementioned approaches, the aim
of this paper is to present a novel Motion Planner for
an autonomous vehicle able to generate references for a
dynamic Motion Controller in dynamic surroundings. It
consists in the generation of kinematic and dynamic refer-
ences for the MC guaranteeing the avoidance of dynamic
obstacles in real time, proposing a translation of the non-
linear optimization problem into a QP problem combining
LPV state-space representation for the non-linear con-
straints associated to the dynamics of the vehicle, and
tube-propagation for linear constraints to guarantee safety
conditions. By this way, the complexity of the problem is
reduced which enables its implementation in real time.

2. PROBLEM STATEMENT

The starting point of this work is an autonomous vehicle
with V2V communication and a level of autonomy 5. That
is, the vehicle can drive autonomously with any human
intervention and counts with a communication system
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to send and receive information from other vehicles. As
commented, the objective is to design a MP able to gen-
erate the kinematic and dynamic references for the MC
guaranteeing collision avoidance.

The optimization-based MP proposed for coordination are
generally non-linear and are formulated with a structure
similar to the one of an MPC controller. This structure
is typically composed by a cost function, used to evaluate
the performance of the path designed along a prediction
horizon (H,) with a determined sampling time (7), and a
set of constraints, used to ensure feasibility by accomplish-
ing the physical and dynamical limitations of the vehicle
while guaranteeing not compromising safety conditions.

J(@(k), u(k)) (1)

subject to the following discretized constraints:

min
u(0)...u(Hp—1)

w(k+1) = f(z(k), u(k)) - Ts + (k) (2)
g(x(k),u(k)) <0 (3)

z(k) € [z,7] (4)

u(k) € [u,1] (5)

Au(k) € [Au, A (6)

Equation (1) is a cost function with linear and quadratic
terms rewarding or penalizing the values of the states,
inputs and their slew rates. In comparison with an MPC
controller, the MP does not count with references; it
generates them. Expressions (4), (5) and (6) delimit the
upper and lower bounds of the states, inputs and slew rates
according to safety and physical limitations.
The first non-linearities come from equation (2), which
are the constraints associated to the dynamic aspects of
the vehicle. The second source of non-linearities are the
inequalities (3), which are non-linear expressions used to
ensure that there is no collision between the vehicle studied
and the obstacles nearby.
The fact of considering avoidance of moving obstacles
inside the MP, forces it to be executed in real time and with
higher frequency, as usually. Therefore, the computational
time has to be reduced. Otherwise, the resulting planner
would not be implementable.To reduce the computational
complexity of the approach, a translation of typical non-
linear solutions into a QP solution which could be solved
in lower computational time has been proposed.
In a first stage, the non-linear expressions associated to the
dynamic aspects of the vehicle from (2) are represented
as linear expressions with LPV matrices embedding the
non-linearities inside time-varying terms.
Moreover, in a second stage, the set of states, inputs and
slew rates admissible is refined by a zonotopic propagation
of the set of possible states along time skipping the non-
linear expressions of the collision avoidance (3). The
objective of the set-propagation based on a specific type of
polytopes called zonotopes is to efficiently compute linear
expressions of a tube of all reachable states and inputs
that can be applied accomplishing the obstacle avoidance
constraints which originally were non-linear.
By this way, the problem gets redefined as a QP problem
constrained by expressions (9), (10) and (8) which can
be solved with lower computational cost because of not
containing non-linear terms.
min
w(0)...u(Hp—1)

J(@(k), u(k)) (7)
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subject to the following constraints:
x(k+1) = A(k)x(k) + B(k)u(k) (8)
z(k) € Sx(k) C [z,7] (9
u(k) € Su(k) € [u, 1] (10)

In this proposal the vehicle has been modeled with a
dynamical bicycle model with the following states: linear,
lateral and angular velocities (vg(t), vy(t) and w(t)), dis-
tance to the center of the road (ey(t)), difference between
the orientation of the vehicle and the curvature of the
road (6.(t)), and the distance traveled (s(t)) measured
projecting the position of the vehicle over the center of the
road. The mathematical expressions of the different states
are defined in equations (11-16), while a more detailed
description of the expressions and the reasoning behind
them can be consulted in Alcald et al. (2020b).

~—
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) = va()sin(@e(0) + v, (Deos(0:1) (14
6.) = ) + 522 DOLD) ;/(z;)i Jeos(0elt)) 1,
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As it can be noticed in this preliminary study, some aspects
have been let for further studies such as the inclusion of the
uncertainties of the model, the uncertainties of the sensors
or issues related with the communication.

3. METHODOLOGY
3.1 LPV approach

The benefits of using LPV matrices is the achievement
of linear expressions to describe the non-linear reality
of the vehicle model defined by equations (11-16). This
LPV representation reduces the complexity of the prob-
lem without introducing the uncertainties associated to
inaccurate simplifications of the model or linearizations
around operational points.

The key aspect of this procedure consists in embedding the
non-linearities of the system inside time-varying parame-
ters precomputed at each iteration. Those parameters are
introduced inside the linear expressions as varying terms
of matrices A and B obtaining a set of linear constraints
for the MP.

As the resulting state-space representation is not fully
controllable for all state values, some adaptations have
been performed to obtain a fully controllable system. On
one hand, it has been considered that the MP will not
be used with linear velocities around zero. Additionally,
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the orientation difference between the vehicle and the
curvature of the road (6.(k)) can be approximated as in
equations (17) and (18) adding new terms A;; solving
controllability problems introducing lower errors as other
simplifications and approaches.

sin(0.(t)) = 0(t)

sin(6(t)) ~ ; + 5 (17)
cos (0, () ~ w + % (18)

Applying both expressions and discretizing via the For-
ward Fuler Method, the LPV state-space representation
obtained is the one described at the constraint (8) with
the LPV matrices (19) and (20).

-T e szn(c?(k))Ts_
0 —cy cos{(:i(k))Ts
B(k) = lrcos(0(k)) 19
0 oY Wy, (19)
0 0
0 0
L O 0 -
1 Awnk) A(k) 0 0 0
Ao (k) Asa(k) Ass(K) 0 0 0
0 Aso(k) As3(k) 0 0 O
AW = |y a0 0 3 a0 @
A51(k) A52(k) 1 0 A55(k‘) 0
Ae,l(k) A@,Q(k) 0 0 A65(]€) 1
where the different time-varying terms A;;(k) are defined
as:
Ara(k) = Cy s;ngzglji)Ts (21)
Aya(k) = v, (K)T, + @WTS (22)
Aoy (k) = —w(k)Ts (23)
Aga(k) = — i +UCJEZ§2§§(]€)) Ts+1 (24)
Ags (k) = Crlr _22%38(6(@)% (25)
A (k) = _C’flfcosl(fx(?]zs + Gyl T (26)
2
Ass(k) = _Osls” Co‘i.(v((lg O L )
Au(r) = 20O g, (25)
Ao (k) = cos(0.(k))Ts (29)
Aus(h) = =0, (30)
As1(k) foj(fj((llz))ZTg (31)
Aralh) = 550, (32)
Ass(k) = 5 ";?;“ELMTS +1 (33)
Ag1(k) = cos(be (k) T (34)
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Auall) = —5 e, (39)
Ags (k) = — —2u(¥) (36)

2— Qey(k)nTs
As it can be observed, values of the sixth state of the
system (s), do not affect to the dynamics of the other
states. In fact, this state could be computed outside the
model at each iteration simplifying it, but its integration
in the model is useful for the prediction step and to easily
weight the distance travelled inside the cost function.

Selection of the LPV matrices: A critical aspect of the
methodology proposed is the selection of the LPV matrices
to obtain an accurate representation of the vehicle. In
this proposal, it has been assumed that the surroundings
will change progressively and no big changes happening
suddenly are expected. By this way, the proposed path
computed at each execution is expected to be similar
to the path designed in the previous iteration adding a
new further step. Consequently, the LPV matrices are
computed based on the estimated location of the vehicle
at each time instant extracted from the previous designed
path. This procedure can be graphically seen in Figure 1:
The vehicle is represented as a big square while the green
curve represents the future locations of the vehicle in case
it follows the last path designed. The LPV matrices are
computed according to the estimated values of the states
at each time instant.

il As3B3

O° 2 °
AsB As4,By
AgE 2,B2

0 AsBs

Fig. 1. Selection of the LPV matrices for the LPV-MP.

As it can be expected, this assumption may induce some
errors in the model. Therefore, the MP should be com-
bined with a closed-loop MC to minimize the error when
tracking the path. Additionally, the MP has to be executed
frequently in order to reduce the difference between expec-
tations and reality, reacting rapidly to unexpected changes
in the surroundings. In the same way, the time length of
the path (H, - Ts) does not have to be excessively large
as in typical off-line MP, because the uncertainty of the
model is higher the further we plan, while the dynamic
surroundings do not ensure the designed path would be
optimal or even feasible in future iterations. Also including
uncertainties inside the model would be interesting to
guarantee robustness.

3.2 Computation of safety Constraints

The second step to skip the non-linearities of the non-
linear optimization problem is based on merging the con-
straints associated to the inputs, slew rates and states
boundaries with the collision avoidance restrictions by
means of set-theory obtaining new linear expressions con-
straining the set of admissible values. In this proposal,
the sets are defined as zonotopes because of its basic
definition and its capability of being propagated with low
computational complexity.
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Firstly,the set of all inputs that are candidates to be
applicable is computed. As shown in (37), it is computed
amplifying the set of inputs applied (or applicable) at
previous time instant and the maximal slew rate allowed
(Saw). Then, all values outside the boundaries are ex-
cluded. This step is performed intersecting the obtained
set with a set containing the upper and lower bounds. By
this way, all inputs that are not applicable due to the slew
rate or constraints are directly excluded from the study.
Secondly, the set of possible states is propagated using
the computed set of inputs and the precomputed LPV
matrices, which are those used for the first stage based on
the expected location of the vehicle at each time instant.
Once the set of all reachable states is computed, it is
intersected with the set of feasible solutions as formulated
in (38). This intersection is performed with the set of all
valid states excluding those which do not guarantee safety
conditions for this time instant (S¢(k)).

Su(k) = (Sulk —1) + Sau) N SY (37)
Salk +1) = (AR)Su (k) + B)Su(R)) N SE (k) (38)

Once the set of reachable states which guarantees the
fulfillment of safety conditions has been computed, a back-
propagation stage using the pseudo-inverse matrix of the
LPV matrix B and the Minkowski difference of sets is
performed to obtain the subset of the inputs that provides
valid states (S;(k + 1)). In other words, (39) refines the
subset of applicable inputs excluding those values which
lead the vehicle into unsafe regions. By this way, the
resulting subsets of inputs and states for a determined time
instant k is contained in the initial set of applicable inputs
and fulfill requirements (40).

Su(k) = B* (k) (So(k +1) ~ A(k)S:(k))  (39)

Su(k) C Su(k) S, (k) C S5 (k) (40)

Up from this point, the constraints associated to the
slew rate (6), boundaries of inputs (5), boundaries of
states (4) and the verification of collision avoidance (3)
can be substituted by limiting the search of solutions
inside the tube containing the reachable safety states (9)
and applicable inputs (10) skipping previous existing non-
linearities.
The proposition for avoiding dynamic obstacles is to
generate tubes not only for the vehicle studied, but also
for the moving obstacles considering the uncertainties
of the estimation of their motions, excluding from the
safety subsets those values that intersect with the tubes
generated for each obstacle nearby.

4. SIMULATIONS

For validating the methodology proposed, the explained
procedure has been implemented in MATLAB and evalu-
ated through simulations in different scenarios. For the
implementation the toolbox for rapid prototyping opti-
mization problems YALMIP, Lofberg (2004), and a tool-
box called CORA, Althoff (2015), useful for defining and
dealing with set operations have been used. The solvers
used for the non-linear MP have been ”fmincon” while the
MP with LPV matrices have been solved with ” quadprog”.
The simulations have been performed in different closed
maps, being the results presented those of the simulations
performed in the map presented in Figure 2. The vehicle
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Y [m]

X[m]

Fig. 2. Simulation of an LPV-MP with a H,, of 40 samples.
Current position and predicted path (green square
and dots), safety margins (blue curves), path already
followed (red curve), obstacles position and future
estimations (red squares and dots).

has been defined with the parameters listed in Table 1,
corresponding to a small car-like robot. An open-loop
controller has been implemented applying the first input
proposed by the MP while the vehicle has been simulated
with its ODEs.

Some dynamic obstacles have been added: four vehicles
driving at constant linear velocity varying its distance to
the center of the road by a sinusoidal function, one located
at the left side, another at the right side and two driving
in parallel. For these simulations the current position and
future movements of the obstacles have been considered
accurately known, reducing their tubes to specific posi-
tions. Therefore, no tube computation for the obstacles is
needed using directly the specific estimated location of the
obstacles for a tightening of the set of valid states (SS (k))
at each time instant in order to ensure safety conditions.

Table 1. Parameters used for defining the car-

like robot.
Parameters Value Parameters Value
Iy 0,125 m ly 0,125 m
Cr 65 N/rad Cy 65 N/rad
m 0,05 I 0,03 kg/m?
m 1,98 kg

Comparison between a NL-MP and an LPV-MP: 1In a
first study, a non-linear MP (from now on NL-MP) and
a linear MP thanks to LPV matrices (from now on LPV-
MP) has been compared. For the comparison the same
initial conditions and scenario have been used.

As already mentioned, for both cases the future location
of the surrounding obstacles were supposed to be known
being represented with red squares and dots in Figure 2.
Then, the boundaries of the lateral distance to the center
of the road has been already redefined before executing
each iteration thanks to the estimated locations of the
vehicle and obstacles at each time instant based in the path
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designed in the previous iteration. This can be observed
with the blue curve in the representation of the map.

As can be observed comparing the results in Table 2, trans-
lating the non-linear dynamical constraints into a set of
linear expressions significantly reduces the computational
cost of finding the optimal solution. In fact, the compu-
tational time required for computing a solution using the
NL-MP is higher than the duration of the designed path.
In case of LPV-MP, this proportion varies depending on
the sampling time (T5) and the selected prediction horizon
(Hp), but it is possible to obtain better results which are
closer to a real-time implementation, verifying the high
benefits of applying LPV matrices inside the MP to avoid
those non-linearities.

Table 2. Comparison of NL-MP and LPV-MP
during a 10 seconds simulation.

MP H, Ts[s] Hp-Ts[s] Teomls] As[m]
NL 10 0,03 0,3 1,7368 22,3457
NL 30 0,03 0,9 14,7916 22,8840
LPV 10 0,03 0,3 0,0242 18,8204
LPV 30 0,03 0,9 0,0792 20,4379

The mean squared error along the 10 seconds of simulation
between the distance travelled by the vehicle using the
LPV-MP compared with the NL-MP is 5,5105 m? for a
prediction horizon of 10 samples and 2,4904 m? for 30
samples, but the mean time required for computing a
path at each iteration gets reduced from 1,7368 seconds to
0,0242 and from 14,7916 seconds to 0,0792, respectively.

Comparison between an LPV-MP and a ZTB LPV-MP:

A comparison between an LPV-MP without the stage
of states propagation (the LPV-MP of the previous com-
parison) and another with the tube computation based
in zonotopes (from now on ZTB-MP) has also been per-
formed to proof that the computational cost of increasing
the tube generation does not increase significantly if the
computational cost is compared with the results of the
initial NL-MP.

Table 3. Results of different MP with (ZTB)
and without (LPV) safety constraints compu-
tation during 10 seconds simulation.

MP H, Ts[s] Hp -Ts[s] Teoml[s] As[m]
LPV 10 0,03 0,3 0,0242 18,8204
LPV 15 0,03 0,45 0,0315 19,3215
LPV 20 0,03 0,6 0,0401 19,6298
LPV 30 0,03 0,9 0,0792 20,4379
LPV 35 0,03 1,05 0,0943 20,6456
ZTB 10 0,03 0,3 0,0362 18,3190
ZTB 15 0,03 0,45 0,0543 19,2598
ZTB 20 0,03 0,6 0,0726 19,5009
ZTB 30 0,03 0,9 0,1313 20,5650
7ZTB 35 0,03 1,05 0,1584 20,8241

The results of the new simulations are shown in Table 3.
The simulation scenario and initial conditions are the
same as in previous simulations. As can be observed in
Figures 3 and 4, where both MP have been graphically
compared, the inclusion of the tube computation does not
infer negatively to the distance travelled obtaining similar
results, while the computational cost increases linearly but
remains in the same order of magnitude, which is lower
than the one of the NL-MP.
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Comparison between LPV-MP and Z-TB MP
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Fig. 3. Comparison between LPV-MP with (LPV-MP) and
without zonotopic propagation (ZTB-MP): Computa-
tional cost.
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Fig. 4. Comparison between LPV-MP with (LPV-MP) and
without zonotopic propagation (ZTB-MP): Distance
travelled.

5. CONCLUSIONS

An optimization-based solution to the collision avoidance
problem for autonomous vehicles has been proposed and
presented in this work. The proposed approach consists
in designing an online motion planner to define a feasi-
ble and efficient path which implicitly guarantees safety
manoeuvres in dynamic surroundings.

Firstly, it is widely known that non-linear MP needs to
be simplified or adapted to be implementable with the
technology of nowadays in case it is desired to be used on-
line. The proposed translation to a QP problem seems to
be a good alternative for this aim. In this case, a trans-
lation of the dynamical constraint into linear expressions
thanks to the LPV matrices has been performed reducing
significantly the computational cost. Secondly, it has been
designed and proved that the zonotope-tube-based states
propagation for defining safety regions does not compro-
mise the computational cost while increases the safety of
the solutions and opens the MP up to include dynamic
obstacles avoidance. For future work, an interesting field
to study and analyse more in-depth is the introduction of
uncertainty in the problem formulation.

It is also interesting to study the possibility of changing
the LPV matrices by a set of LPV matrices for operating
the states propagation to increase the robustness of the
safety region provided by this stage.
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