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Abstract

Robotic manipulation of cloth is a complex task because of the infinite-
dimensional shape-state space of textiles, which makes their state estimation
very difficult. In this paper we introduce the dGLI Cloth Coordinates, a
finite low-dimensional representation of cloth states that allows us to effi-
ciently distinguish a large variety of different folded states, opening the door
to efficient learning methods for cloth manipulation planning and control.
Our representation is based on a directional derivative of the Gauss Linking
Integral and allows us to represent spatial as well as planar folded configura-
tions in a consistent and unified way. The proposed dGLI Cloth Coordinates
are shown to be more accurate in the representation of cloth states and sig-
nificantly more sensitive to changes in grasping affordances than other classic
shape distance methods. Finally, we apply our representation to real images
of a cloth, showing that with it we can identify the different states using a
distance-based classifier.

Keywords: semantic state labelling, robotic cloth manipulation, deformable
object representation and classification, Gauss Linking Integral (GLI)

1. Introduction

Textile objects are important and omnipresent in many relevant scenarios
of our daily lives, like domestic, healthcare, or industrial contexts. However,
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as opposed to rigid objects, whose pose is fixed with position and orienta-
tion, textile objects are challenging to handle for robots because they change
shape under contact and motion, resulting in an infinite-dimensional config-
uration space (when considered as continuous surfaces in 3D space). This
huge dimensional jump makes existing perception and manipulation meth-
ods difficult to apply to textiles. Recent reviews on cloth manipulation, like
[28, 35], agree on the need to find a simplified representation that enables
more powerful learning methods to solve different problems related to cloth
manipulation.

Different representations have been used in the literature of cloth ma-
nipulation, e.g. silhouette representations [22] or contours [9], assuming the
high-level reasoning on cloth states was given. More modern end-to-end
learning approaches use RGB-D images directly [20, 29, 32], but only very
simple actions can be defined due to the limited state representation. In
addition, these deep-learning based methods need large amounts of real or
simulated data (e.g. [17, 21]) that are expensive to obtain and label, as no
underlying previous knowledge is used to understand the geometric relation-
ship between different states. Therefore, finding a low-dimensional represen-
tation for cloth based on low-level features remains an active open problem,
while the high-level aspect of understanding cloth deformation is still almost
unexplored.

Furthermore, to enable reasoning, abstraction and planning, rigid object
manipulation applies object recognition methods in order to link objects to
actions [6, 34]. Contacts among objects are estimated to recognize states such
as “on top of”, “inside of” [2]. However, when it comes to cloth manipulation,
no work has explored the semantic state identification that could lead to
particular actions depending on the task in mind. For simpler deformable
objects like a box with an articulated lid, the open configuration clearly
allows the action of closing the box or picking something from inside. An
equivalent example for cloth would be to recognize a folded corner that needs
to be either flattened back if the task is to lay the cloth flat on the table,
or picked up if the task is folding. In this context, we wish to decompose
the configuration space of a piece of cloth into macro-states (or just states),
where each state is the set of cloth configurations that can be manipulated
in the same way, i.e., that have similar grasping affordances.

In this work, we present a coordinate representation of the configuration
of cloth as an upper triangular matrix form (see Figure 1). This represen-
tation can be computed with a closed-form formula from low-level features
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Figure 1: Folding sequence of a quadrangular cloth with its associated dGLI cloth coordi-
nates, represented as upper triangular matrices. Each matrix element mij is a geometrical
value corresponding to the dGLI between the segments i and j highlighted in red in the
corresponding folded state of the cloth. Notice how some values of the matrix change sign
when corners are folded or cross each other.

of the cloth –the position of its boundary– and enables the recognition and
classification of high-level states, since we can define a distance between cloth
configurations. This representation allows us to classify different configura-
tions into states that we identify as “different”, meaning that they afford
different actions.

The fact that our low-dimensional representation relies only on the po-
sition of the cloth’s boundary is supported by the result that under certain
conditions the boundary curves of a textile determine completely its position
in space. Indeed, in [3] it is proven that a generic simple, closed, piecewise
regular curve in space can be the boundary of only finitely many developable
surfaces (i.e. Gaussian curvature 0) with non-vanishing mean curvature.
Since the original state of a piece of cloth is unfolded and flat, the set of pos-
sible states, if we assume that the textile is inextensible (i.e. constant first
fundamental form in time, see [7]) is precisely the set of developable surfaces
isometric to a fixed one. For problems such as the study of cloth dynamics
it is not necessary for the boundary problem to have a unique solution. It
suffices to know that it will always have a finite set of solutions, because this
solution set is then discrete, with different solutions separated by a nontrivial
jump in any tagging energy, local coordinates, etc. This implies that during
a continuous cloth motion, the position of a garment is determined by the
location of its boundary.

Our coordinates are based on a topological index, the Gauss Linking
Integral (GLI). This index has been used in the past for robotic manipulation
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[16, 24, 30, 31, 37] but can only be applied to 3D curves. For a pair of
almost co-planar curves, as the boundary curves of a folded garment, the
GLI vanishes and ceases to be informative. In order to consider almost co-
planar curves (as well as 3D curves), we introduce in this work the concept
of the directional derivative of the GLI, dGLI, applied to a pair of curves.
The dGLI is symmetric on the curves and it only depends on the relative
position between them. We assign the dGLI Cloth Coordinates to a state
of a garment as follows: first select a subset of edges (it may contain the
whole of them) from a discretization of the boundary of the garment; then
fix an ordering on these edges and compute the dGLI between any pair of
edges in their spatial position of the current state of the garment; this gives a
symmetric matrix from which only the upper triangular part is taken in order
to avoid redundancies; the dGLI cloth coordinates of the state are precisely
the entries of this upper triangular matrix (see Figure 1). Our resulting
representation can be computed efficiently and is invariant under isometric
movements of the garment (i.e. rotations and translations), leaving invariant
a distinguished direction which is normal to a predominant plane in the scene
(e.g. a table used as support for the manipulations).

This article is structured as follows: in the next section we present pre-
liminary concepts used in the paper, such as the Gauss Linking Integral, and
we explain its limitations in a planar setting. Then, in Section 3 we intro-
duce the novel concept of the directional derivative of the GLI which is also
applicable for flat configurations. We derive first an expression for the GLI
of two segments, then we prove that we can perturb the segments slightly
to obtain information when they are co-planar and we explain how to apply
this to a full meshed cloth. Next we study some of the properties of this new
index by applying it to a database of cloth configurations of a napkin taken
from simulated folding sequences, to then experimentally test the index on
real images. We also show that it is possible to apply our representation
to garments with non-trivial topology, such as a pair of shorts. Finally, we
discuss the obtained results and draw some conclusions in the last section.

2. Preliminaries and related work

Definition 1 (Gauss Linking Integral of two curves). Given two C2 non-
intersecting 3D-space curves γ1, γ2 parameterized by x(s) and y(t), respec-
tively, with s, t ∈ I = [0, 1], the Gauss Linking Integral between them, GLI
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for short, is

GLI(γ1, γ2) =
1

4π

∫
I

∫
I

(y(t)− x(s)) · (y′(t)× x′(s))
|y(t)− x(s)|3

dtds

or written in a compact way

GLI(γ1, γ2) =
1

4π

∫ ∫
(γ2 − γ1) · [γ′2 × γ′1]
‖γ2 − γ1‖3

. (1)

This double integral is invariant under re-parameterizations of the curves.
In the case that both curves γ1 and γ2 are closed and smooth, their GLI
is integer valued (due to the chosen normalization factor 1

4π
) and it is an

invariant of the topology of the embedded curves (their linking number, see
[1]).

Historically, the GLI was first introduced by Gauss, presumably related
to his works on magnetism (according to [27]) or on astronomy (according
to [11]). Considering the GLI(γ, γ) of twice the same non-self-intersecting
smooth curve γ, then the double integral (taking the domain of integration
outside the diagonal of I×I) defines another geometric invariant of the curve,
known as writhe or writhing number of γ. Despite their resemblance, the GLI
and the writhe measure different quantities: consider a normal vector field v
of length ε > 0 on γ, and the curve γv of endpoints of the vector field v, which
is embedded and in one-to-one smooth correspondence with γ for sufficiently
small ε. Then the GLI of these two close copies of the same γ differs from the
writhe in GLI(γ, γv)−GLI(γ, γ) equal to the total twist of v. This result is
known as the Călugăreanu-White-Fuller theorem (see [23]). However, both
indexes, GLI and writhe, are non-informative for planar curves, since they
both vanish.

The GLI has been used for many applications after a version of the
above formula for polygonal curves appeared in the context of DNA protein
structures [19], with additional efficient formulations given in [18] from which
we have chosen the following: given two piece-wise linear curves of N and
M segments, that is, γ1 = {γPiPi+1

, i = 1, . . . , N} and γ2 = {γQiQi+1
, i =

1, . . . ,M}, where each segment is parameterized as γAB(s) = A + s ~AB for
s ∈ [0, 1], then the GLI between both curves is

GLI(γ1, γ2) =
1

4π

N∑
i=1

M∑
j=1

GLI(γPiPi+1
, γQiQi+1

) (2)
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where the GLI between a pair of segments γAB and γCD is computed as

GLI(γAB, γCD) = arcsin(~nA~nD) + arcsin(~nD~nB)

+ arcsin(~nB~nC) + arcsin(~nC~nA)
(3)

with

~nA = ‖ ~AC × ~AD‖, ~nB = ‖ ~BD × ~BC‖,
~nC = ‖ ~BC × ~AC‖, and ~nD = ‖ ~AD × ~BD‖.

Remark 2.1. The above formula is not an approximation in the sense that
it is the exact value of the integral (1) when applied to piece-wise linear
curves.

The discrete formula (3) was used by Ho [15] to identify and synthe-
size animated characters in intertwined positions [14, 15]. In the context of
robotics, the GLI has been applied to representative curves of the workspace
to guide path planning through holes [16, 37], for guiding caging grasps in
[24, 30, 31], and for planning humanoid robot motions using the GLI to
guide reinforcement learning [36]. In this work, for the first time, we develop
a further analysis of the notion to be able to apply it to planar or almost
planar curves, which opens the door to a wider spectrum of applications.

3. Derivation of the Cloth Coordinates

As we have mentioned above, the GLI of two coplanar curves vanishes; so
for many configurations of robotic interest — configurations where the cloth
is nearly flat on a table, ready to be folded or already folded— the GLI does
not provide much information. Our aim in this section is therefore to develop
a similar index which is able to distinguish planar configurations. We shall
see that a natural index to consider is in fact a directional derivative of the
GLI, but to arrive at such an index we must first make a few observations
about the GLI when applied to pairs of segments as in Equation (3), since
the class of curves we will be working with computationally are piece-wise
linear.

3.1. GLI of two segments

Since two segments AB and CD are uniquely defined by the four end-
points A,B,C,D ∈ R3, the GLI of two segments computed in Equation (3)
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can be viewed as a function from (R3)4 ≡ R12 to R. To emphasize that from
now on we are considering segments we define G : R12 → R as

G(A,B,C,D) = GLI(γAB, γCD) =
1

4π

∫ ∫
(γCD − γAB) · [γ′CD × γ′AB]

‖γCD − γAB‖3
.

(4)
Note that technically G is not defined in the whole of R12, since it is not
defined when γAB and γCD intersect.

Lemma 1. Given two non-intersecting segments AB and CD with endpoints
A,B,C,D ∈ R3, let γCD and γAB denote a parametrization of them. Then

G(A,B,C,D) = V(A,B,C,D) · I(A,B,C,D)

where V(A,B,C,D) = det( ~AB, ~AC, ~AD) is the signed volume of the tetra-
hedron ABCD multiplied by 6 and

I(A,B,C,D) =
1

4π

∫ ∫
1

‖γCD − γAB‖3
.

Proof. This is a straightforward computation: notice that the numerator in
the integral expression of the GLI in Equation (1) is constant (for any t and
s) because the curves are segments and equals

(γCD − γAB)·[γ′CD × γ′AB] =

= ( ~AC + t ~CD − s ~AB) · [ ~CD × ~AB] =

= ~AC · [ ~CD × ~AB] =

= ~AC · [( ~CA+ ~AD)× ~AB] =

= ~AC · [ ~AD × ~AB] = ~AB · [ ~AC × ~AD] =

= det( ~AB, ~AC, ~AD)

the signed volume of the tetrahedron ABCD multiplied by 6. By writing

V(A,B,C,D) = det( ~AB, ~AC, ~AD)

and

I(A,B,C,D) =
1

4π

∫ ∫
1

‖γCD − γAB‖3
,

we have
G = V · I . (5)
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Remark 3.1. When two segments are co-planar their GLI vanishes since
the tetrahedron they span has volume 0.

Corollary 3.1. The function G(A,B,C,D) = GLI(γAB, γCD) is the prod-
uct of two differentiable functions and hence differentiable with respect to
A,B,C,D.

3.2. Directional derivative of G
In this section we discuss how to perturb G in order to make it informative

in planar settings.

Definition 2 (Directional derivative of G). Let vA, vB, vC , vD ∈ R3 be ar-
bitrary directions and AB, CD two non-intersecting segments. The di-
rectional derivative of G at the point (A,B,C,D) in the direction of v =
(vA, vB, vC , vD) is defined as the limit

∂vG(A,B,C,D) = lim
ε→0

G((A,B,C,D) + ε(vA, vB, vC , vD))− G(A,B,C,D)

ε
.

Remark 3.2. Notice that this limit always exists since we have shown that
G is a differentiable function with respect to A,B,C,D. Moreover, ∂vG can
be equivalently written as

lim
ε→0

GLI(γA∗B∗ , γC∗D∗)−GLI(γAB, γCD)

ε
,

where A∗ = A + εvA, B∗ = B + εvB, C∗ = C + εvC , D∗ = D + εvD and
ε is sufficiently small so that A∗B∗ and C∗D∗ do not intersect. Also, from
Equation (5) and by the product rule

∂vG = ∂v(V)I + V∂v(I),

hence ∂vG = ∂v(V)I when the segments γAB and γCD are coplanar.

Properties of ∂vG. By definition ∂vG is invariant under translations, ro-
tations and scalings if v is rotated and scaled accordingly. These properties
are a consequence of the fact that the GLI is invariant under such transfor-
mations. However, for a fixed choice of v, ∂vG will not be invariant under
rotations or scalings in general. For instance, no fixed choice of v can make
∂vG invariant under scalings, since scaling by a factor of λ scales I by 1

λ3
and

∇V by λ2, and similarly scales ∇I by 1
λ4

and V by λ3, resulting in scaling
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∇G by 1
λ
. Depending on what this index is used for, one must keep this

scaling relationship in mind or alternatively choose v depending on the seg-
ments. However, the distance we will use to compare different cloth states
only depends on the correlation of values of the coordinates more than on the
magnitude. That is why we can ignore the scaling factor that would appear
when comparing two garments of different sizes (e.g. because of different
meshings).

Choice of v. This is highly task-specific, but given the nature of our task
–classifying planar cloth configurations based on affordances– it is natural to
perturb the vertices in the direction normal to the table plane. Making such
a choice of v does in fact make ∂vG invariant under rotations and translations
of the XY plane, which is desirable for our purposes since such movements
of a cloth configuration have the same affordances. Furthermore, to conserve
the symmetry ∂vG(A,B,C,D) = ∂vG(C,D,A,B), we must perturb A and C
by the same amount and direction, and the same is the case with B and D.
Finally, it is easy to see that in fact perturbing A and C both by the same
amount normal to the plane yields the same result as perturbing B and D
by the same amount in the opposite direction, so it really only makes sense
to perturb A and C, or B and D, but not both pairs, and doing one or the
other is equivalent except for a sign change. In summary, the most natural
choice of v in our case is

v := (~0, e3,~0, e3) (6)

(or v = (e3,~0, e3,~0), which is equivalent except for a sign change) where
e3 = (0, 0, 1) is the normal to the plane of the table on which the cloth lies.

3.3. Practical computation of dGLI

We summarize the discussion of the previous section in the following
definition.

Definition 3 (dGLI of two segments). Given two non-intersecting segments
γAB and γCD, we define

dGLI(γAB, γCD) := lim
ε→0

GLI(γAB∗ , γCD∗)−GLI(γAB, γCD)

ε
, (7)

where B∗ = B + εe3, D
∗ = D + εe3, e3 = (0, 0, 1) and each GLI function

can be computed using Equation (3). This index is invariant under rota-
tions and translations of the XY plane and moreover dGLI(γCD, γAB) =
dGLI(γAB, γCD).
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Remark 3.3. We have analyzed numerically the limit defined in Equation
(7), and have found that it is sufficiently stable to be computed as

dGLI(γAB, γCD) u
GLI(γAB∗ , γCD∗)−GLI(γAB, γCD)

ε

for a sufficiently small ε. Since we work with double precision floats (which
amount for a precision of around 14-15 decimals), it is known (see [12]) that
when approximating derivatives numerically, one obtains better results when
choosing perturbations which only affect 7 or 8 decimal places, for instance
ε ≈ 10−8. This is the value taken in our experiments.

Remark 3.4. In practical implementations, we may well be computing the
dGLI between segments γAB and γCD that are very close to intersecting (but
not intersecting since the cloth has thickness), and then dGLI(γAB, γCD) be-
comes very large. As having such big quantities can dominate values of met-
rics and distances in a non-representative way, in practice we set a maximum
value to the dGLI once it surpasses a fixed threshold.

3.4. Definition of the dGLI Cloth Coordinates

Since we are now equipped with a geometric index for pairs of segments,
we are ready to introduce our cloth coordinates, which will parametrize the
shape-state space of a piece of cloth. We assign the dGLI Cloth Coordinates
to a cloth configuration C of a garment as follows:

Definition 4 (dGLI of a cloth surface C). Given a discretization of the
boundary of the garment surface C as a polygonal curve, select an ordered
subset of edges of it SC = {Si : i = 1, . . . ,m}. Then, the dGLI Cloth
Coordinates of configuration C is the upper triangular matrix

dGLI(C) =
(
dGLI(Si, Sj)

)
Si,Sj∈SC ,i>j

. (8)

To get an intuitive sense of what these upper triangular matrices look like
for some cloth configurations, see the examples in Figure 1. If we were inter-
ested in a general direction v, we would take the dGLIv Cloth Coordinates

dGLIv(C) =
(
∂vG(Si, Sj)

)
Si,Sj∈SC ,i>j

.

Note that the full matrix when taking all the edges of the discretization is
the equivalent rationale to computing the GLI of a polynomial curve used
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Figure 2: The subset of chosen segments are marked red. For the shorts, four of the
selected boundary edges on the back are not visible in the figure.

in [15, 19], where the GLI of all pairs of segments of the curves where first
assembled in what was there called the GLI matrix [15].

Choice of edges. The subset SC of edges chosen in the discretization de-
pends on the task one wants to carry out; tasks that demand finer distinctions
between configurations of a similar class would require a greater subset of
segments. For our task of classifying the configurations into relatively broad
classes, we found experimentally that a good choice of segments for a rectan-
gular piece of cloth are the eight segments adjacent to the corner segments,
marked red in the left panel of Figure 2. In the case of a garment with a more
complicated topology, more edges must be chosen, e.g. for a pair of short
pants we choose the twelve boundary edges shown in red in the right panel of
Figure 2. In both cases, this small subset is nevertheless enough to provide
an accurate affordance-based classification of near-to-flat configurations.

The upper triangular matrix in Equation (8), sorted as a vector, is a co-
ordinate system that reduces the infinite dimensionality of the configuration
space of cloth states to a mere m(m−1)

2
dimensional space. For instance, for

a rectangular cloth m = 8, so this comes out to 28 dimensions. This re-
duction in dimensionality is well-suited and informative enough for practical
purposes, as the validation results in next section will show.
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4. Results

In this section we study the ability of the cloth coordinates previously
defined to tell apart different cloth states. First, we analyze 4 folding se-
quences (see Figure 3). We will show that our representation is capable of
distinguishing different relevant cloth configurations (e.g. one folded corner
vs two folded corners). Then, we will apply our method to a full database
with 12 cloth classes (shown in Figure 4), and we will compare it to 4 alter-
native representations, proving that ours is more capable of distinguishing
between cloth states. All data in this section was simulated using the inex-
tensible cloth model described in [7]. All simulations are performed with a
square cloth of dimensions 1m×1m and a computational mesh of 400 nodes;
except for the short pants (whose shape is taken from the UC Berkeley Gar-
ment Library) which consist of 537 nodes (see Figure 2, right). Finally, we
will apply a simple classification method using our representation to real
images of folded cloth states.

In order to compare different cloth configurations, once they are repre-
sented with our cloth coordinates dGLI(C) ∈ R28, it is important to use a
proper distance. Due to the scaling factor that we analyzed in the previous
section, the most suitable distance was the Spearman’s distance. Given two
vectors x, y it is defined as

d(x, y) = 1− ρ(R(x),R(y)), (9)

where ρ is the Pearson correlation coefficient, and R(x) is the rank variable of
x (i.e. ordering the coordinates of x from lowest to greatest and then assign-
ing to each coordinate its position in the ranking). This distance assesses
how well the relationship between two vectors x, y can be described using
any monotonic function (not only a line). We found this distance to be more
sensitive to changes of the cloth configuration than the euclidean distance.
This may be due to the fact that this distance focuses on the ranking order
between coordinates (with sign) rather than comparing their magnitudes,
which is most relevant in our representation. Note that the Spearman’s dis-
tance is bounded with values between 0 and 2 and ignores scaling factors
between different clothes.

4.1. Analysis of folding sequences

The first test compares different cloth states inside a folding sequence.
Given the motion of the cloth {C1, . . . , Cm}, where m is the number of discrete
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Figure 3: Study of the index during 4 folding sequences. In the left column we show a
representation of the cloth frames, and in the right column the confusion matrix of all of
them. In red we highlight the class changes that can be identified.
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frames and Ci is the state of the cloth at ti, we compute the confusion matrix
Mij = d(dGLI(Ci), dGLI(Cj)). The 4 folding sequences, shown at the left
side of Figure 3 are: folding two opposite corners, folding 4 corners inwards,
folding the cloth in half and folding a pair of shorts in half dynamically.
The results can be seen on the right side of the figure. Notice how our
representation detects changes during the sequence that are meaningful. For
example, in Seq. 1, folding two opposite corners, at frame 7, there is an
important change, since a corner changes the orientation from flat to folded,
even before it is released. This can be seen in the confusion matrix (first
two blue squares). This is also clear in Seq. 2, where four corners are folded
inwards. Moreover, our method also detects when edges of the cloth cross
(Seq. 1, frame 24, Seq. 3, frame 23). These changes are also meaningful from
the manipulation point of view, as they afford different possible graspings or
actions. Especial mention deserves Seq. 4 since the cloth has non-trivial
topology and the garment hangs and is non-flat during a significant part of
the folding. In this sequence our representation detects correctly the moment
in which the shorts touch the table (frame 14), when the top two controlled
corners start to descend (frame 19) and the moment in which the fold is
completed (frame 32).

4.2. Confusion matrix of the full database

We now analyze a complete database consisting of 120 examples classified
in 12 different classes of states, shown in Figure 4. Most of them are self-
explanatory. Note that in the class 10 the upper left corner is folded under
the cloth (likewise for class 11). Each class has 10 samples corresponding
to the final state of the cloth during a folding sequence simulation. We
manually identified samples that we considered to belong to the same state.
We want to emphasize that once we fix an ordering of the corners, our method
distinguishes, for example, between different folded corners and this does not
contradict the rotational invariance previously shown.

Again we compute the confusion matrix Mij = d(dGLI(Ci), dGLI(Cj))
where Ck is the kth example of the database. We order the samples, so that
the samples from the same classes are consecutive. This way, the plot is more
easily interpretable. In Figure 4 we can see how the classes group without
confusion: i.e. the distance between members of a class tends to be smaller
(color blue) than the distance to examples outside the class (color yellow).

The confusion matrix shows us interesting insights about our representa-
tion. For instance, we can see that the two classes 01 and 04 are relatively

14



Figure 4: Confusion matrix of all the distances between the states shown in the top table.

closer than others. That is because the relative position of all edges is indeed
the same in these classes, resulting in a smaller distance in our representa-
tion. The same phenomenon can be seen between classes 05 and 12 in some
cases, as they are indeed classes with similarities (in 05 the two corners do
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not cross, whereas in 12 they do). However, classes 03 and 11, which differ
on whether or not the folding makes one side of the cloth hide its opposite,
are perfectly separated. The borderline cases, that is, the fourth element in
class 03 and the first element in class 11 are very similar, but our method
distinguishes them because of the relative geometric position between edges
(i.e. in these two cases, they are flipped). A similar thing occurs between
classes 02 and 10. It is also worth mentioning that some classes that we
have labeled as the same class have clear sub-classes shown in the confusion
matrix. That is the case for classes 05, 07 and 08. These are folded corners
with different orientations. It is possible, using our representation, to induce
a partition of the space in order to separate this type of class into two.

4.3. Comparison with other shape representations

In this subsection we perform a more quantitative comparison of our
state representation with other competing methods in representing shapes.
To evaluate a representation, we use the standard Davies-Bouldin index to
measure cluster separation [8]:

DB =
1

n

n∑
i=1

max
j 6=i

(
σi + σj
d(ci, cj)

)
(10)

where n is the number of classes (e.g. in the database is 12), ci is the
centroid of class i (the average of the coordinates of members of class i), σi
is a dispersion measure computed as the average distance of all elements in
class i to the centroid ci and d(ci, cj) is the distance between centroids ci and
cj. With the classification given in Figures 3 and 4 taken as ground truth,
we want a representation that gives a small dispersion inside a class and high
distance between the classes, resulting in a low index. The representation and
distance with the smallest DB is considered the one that better separates
these clusters, and therefore, the best representation to identify different
cloth states.

First, we use two simple cloth shape representations using similar low-
level features like the ones we used:

(i) Edges: for a given mesh we select the edges shown in Figure 2 and
compute their pairwise minimal distance. This results in a represen-
tation vector of length just like that of the dGLI coordinates (notice
that unlike the dGLI, the coordinates of this vector are always non-
negative). We use the Spearman’s distance to compare two different
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Table 1: Comparison between different shape representations*

Database Seq. I Seq. II Seq. III Seq. IV

dGLI 0.73 0.27 0.18 0.21 0.52
Edges 1.60 0.68 0.77 0.51 1.91

Corners 2.49 0.98 1.61 3.14 1.86
Fréchet 0.99 0.69 0.76 0.48 0.90

Hausdorff 1.45 0.71 0.84 0.49 0.90

*Each number is the Davies-Bouldin index introduced in Equation 10, that
measures cluster separation quality. A smaller value means a better separa-
tion. We mark in bold the smallest values in each column.

samples. This representation is invariant under rigid motions of the
plane.

(ii) Corners: for a given rectangular mesh we compute the pairwise dis-
tance between its 4 corners. In the case of the shorts, we take the 6
nodes shown in Figure 2. These are 6 or 15 non-negative numbers that
can be computed for any cloth, they are invariant by rigid motions and
they give a trivial representation of the state of the cloth. We also use
Spearman’s distance to compare different samples.

In addition, we compare with two classic methods to measure distance
between curves and polygons [4, 33], taking the full discrete boundary curve
of the garments as the state representation:

(iii) Fréchet: to compare two different samples we compute the (discrete)
Fréchet distance [10] between the curves. This is a distance that takes
into account the location and ordering of the points along the curves.
Since this distance is not invariant by rigid motions, special care must
be taken to center and align the samples before comparing them. In
order to do so we center the curves at the origin and perform a rigid
alignment by computing the rotation that minimizes the distance be-
tween the curves’ points.

(iv) Hausdorff : to compare two different samples we compute the (dis-
crete) Hausdorff distance between the points of the curves [13]. In-
formally, two curves are close in the Hausdorff sense if every point of
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either curve is close to some other point of the other one. This dis-
tance disregards the fact that the sets it is comparing are curves and
therefore is expected to be less sensitive than the Fréchet distance. As
before, since this distance is not invariant by rigid motions, we center
and align the samples before comparing them.

In Table 1, we display the computation of the DB index for our dGLI
coordinates and the four discussed methods, using as testing scenarios the full
database and the 4 folding sequences presented before. As seen in the table,
our method results in the lowest overall DB in all 5 scenarios, indicating that
our method is the one among those studied that best represents the different
folded states of the textiles.

4.4. Real images classification

Once checked that our method was able to represent folded states of cloth
accurately, we implemented a simple classifier of real folded cloth states to
asses its applicability. In order to do so, a synthetic representative element of
each class in the database shown in Figure 4 is chosen, and we estimate the
class of a new real unclassified sample by choosing its closest representative,
using Spearman’s distance.

Figure 5: Synthetic representatives chosen for each class. When only one is chosen, it
is the closest to the centroid of the class. When a class has more sparsity, additional
representatives are chosen to represent the subgrups in the class.

The real images are taken from a zenital position at 52 cm from the
table using a Microsoft Azure Kinect DK 3D camera. A single napkin is
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used with 3 colored stickers attached along each edge, close to a corner and
on both sides. We first use color segmentation to detect the center of each
sticker and get the corresponding 3D point from the depth image. Once all
markers are detected, with our combinations of colors on each edge, we can
identify each individual corner of the cloth (there are four stickers of the same
color around each corner), and its corresponding edge positions, following the
same edge selection as in Figure 2. The obtained size of the observed edges
is more than 400 times larger than the edges of the samples of the simulated
database, but thanks to the Spearman’s distance used, this does not affect
the distance values when comparing shapes of different sizes.

As we can see in the confusion matrix in Figure 4, some classes have
a larger dispersion in distance because of the variation in orientations of
the corners. For these classes, we have chosen 3 different representatives,
corresponding to the three subgroups that can be clearly seen in the confusion
matrix. We show the silhouette of the representatives chosen for each class
in Figure 5. The table in Figure 6 shows the results of the classification.

The only miss-classification is that of the last image in class 04. However,
note that this is a very extreme case where the edges of the cloth are in a
relative position very similar to the flat unfolded case, and therefore, it is
classified in class 01. This is a reasonable mistake, as this cloth can be
considered flat enough.

Notice that we can only perceive those textiles with all the stickers visible,
therefore, classes with hidden edges, like for instance classes from 09 to 12
where the folding is under the cloth, are not present in the real set of samples.
However, the classifier still used all 12 classes of the simulated database. This
shows that the missing classes don’t create confusion in the classification
process.

5. Conclusions

We have proposed the dGLI Cloth Coordinates, a representation for cloth
configurations based on a directional derivative of a topological index that
greatly reduces the dimensionality of the cloth configuration space, going
from a full cloth surface to a vector of dimension 28 (for a rectangular cloth).
This reduced representation nevertheless preserves enough information about
the configurations to be able to distinguish them according to their grasping
affordances using Spearman’s distance. The fact that using our representa-
tion we can successfully classify real configurations of cloth from synthetic
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Figure 6: Results of the real image classification using the simulated database presented
in Figure 4 as reference. The first column shows the ground truth class of the images, and
at the bottom of every image the classified class.

generated samples as seen in Figure 6 shows great promise for applications
in planning for cloth manipulation. Furthermore, our representation allows
for different choices of v, the perturbation direction, and S, the subset of
edges chosen, so that one can fine-tune the representation to the specific
task at hand to boost results. Moreover, we evaluated successfully the ex-

20



pressive power of our representation during a folding sequence of a garment
with non-trivial topology (a pair of shorts). Lastly, since our method is not
learning-based, it does not require any training data, it is completely ex-
plainable, and it is robust against possible configurations that are not in the
training set.

In summary, the dGLI Cloth Coordinates bridge the gap between low-
level features of different cloth configurations, such as the location of corners
and edges, to high-level semantic identification of cloth states, associated to
their possible affordances.

6. Limitations and further work

Although a strong assumption is made in this work, that is, that we
know the full border of the cloth, perception algorithms are starting to show
solutions to overcome this problem. For instance, in [26] a method is de-
veloped to detect parts of clothes suitable for grasping and more recently,
the deep-learning approach presented in [25] can identify corners and edges,
but does not yet identify the full border. Our group is working on different
deep-learning and mathematical methods to hallucinate the full boundary
given an image (or point-cloud) of the cloth to overcome this limitation.

Meanwhile, our representation can be fully used in simulation with several
important applications, such as building datasets where automatic segmenta-
tion of the cloth states is required (see e.g. [5]), monitor cloth manipulation
and guide planning methods. We are looking forward to pursue all these
lines of research that the present work opens the door to.

Future work also concerns an in-depth analysis of the configuration space
defined by our coordinates. In particular, we would like to identify a partition
of the space that corresponds to a partition of configurations by grasping
affordance, which states are neighbors in this partition, and what the shortest
paths from one state to another are. This line of research is expected to be
especially complex and rich for garments with non-trivial topology. We look
forward to carrying out this study analytically as well as through learning
methods, which we believe will give better results when the data is enriched
and given structure through our representation.
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