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Abstract
Learning from demonstration allows to encode task constraints from observing
the motion executed by a human teacher. We present a Gaussian-Process-
based learning from demonstration (LfD) approach that allows robots to learn
manipulation skills from demonstrations of a human teacher. By exploiting
the potential that Gaussian Process (GP) models offer, we unify in a single,
entirely GP-based framework, the main features required for a state-of-the-
art LfD approach. We address how GP can be used to effectively learn a
policy from trajectories in task space. To achieve an effective generalization
across demonstrations, we propose the novel Task Completion Index (TCI)
for temporal alignment of task trajectories. Also, our probabilistic GP-based
representation allows encoding variability throughout the different phases of
the task. Finally, we present a method to efficiently adapt the policy to ful-
fill new requirements and modulate the robot behavior as a function of task
variability. This approach has been successfully tested in a real-world appli-
cation, namely teaching a TIAGo robot to open different types of doors.

Keywords: Artificial Intelligence, Robot Learning, Gaussian Processes, Learning from
Demonstration, Heteroscedasticity

1 Introduction
Robots are progressively spreading to logistic, social and assistive domains. How-
ever, in order to become handy co-workers and helpful assistants, they must be
endowed with quite different abilities than their industrial ancestors (Torras, 2016).

1



Moving robots from simple problems to unstructured environments requires a very
specific set of skills and knowledge (Billard et al, 2022).

For enabling complex robotics applications, it is much easier for a human to
demonstrate the desired behavior rather than attempt to engineer it. This is the main
principle behind robot learning from demonstration (LfD). End-users could easily
teach robots new tasks without the need of expert programming.

1.1 Learning from Demonstration
Learning from demonstration (LfD) is the paradigm in which robots implicitly
learn task constraints and requirements from demonstrations of a human teacher
(Ravichandar et al, 2020). This allows more intuitive skill transfer, satisfying a need
of opening policy development to non-robotic-experts as robots extend to assistive
domains. Flexible models that allow learning the task by extracting relevant motion
patterns from the demonstrations, and subsequently apply these patterns to perform
the task in different situations, are essential for transferring human skills to robots.
Over the last decade, learning from demonstration has been an intensive field of
study, for which research interest has done nothing but steadily increase. Also note
that, although we use the term learning from demonstration to encompass the field
as a whole, other popular terms are used in the literature such as imitation learning,
programming by demonstration, and behavioral cloning, among others.

Different learning approaches, namely supervised, reinforcement, and unsuper-
vised, have been used to address a plethora of problems in robot learning. The choice
between the different methods is not trivial and depends on the problem of interest
(Chen et al, 2020). From a general perspective, to allow robots to learn skills from
human demonstrations, we need to develop a system that records demonstrations by
experts, learns the ideal behavior from the available demonstrations, and reproduces
it.

Several survey papers on robot learning from demonstration provide a distinct
overview of the field by answering them from different perspectives (Ravichandar
et al, 2020; Osa et al, 2018).

1.2 Trajectory-based robot learning methods
Algorithms that encode skills using trajectory-based representations, are the most
dominant family in learning from demonstration research (Colomé and Torras, 2020).
These methods rely on low-level controllers to execute the trajectories required to
perform the taught skill. Skills are encoded by extracting trajectory patterns from
demonstrations (Figure 1), using a variety of techniques to retrieve a generalized
shape of the trajectory (Calinon and Lee, 2019). The main reason behind the popu-
larity of these algorithms, is that, assuming that the system is fully actuated (which
is the case for most robot manipulators) we do not need any knowledge of the robot
dynamics.

For addressing the learning from demonstration problem, we can assume that
there exists a direct and learnable function (i.e., the policy) that generates the desired



Fig. 1 The Gaussian-Process-based LfD approach allows to teach robot tasks such as opening doors.

behavior. This policy can be defined as a function that maps available information
onto an appropriate action space

π : X −→ Y (1)
where X represents the inputs required to execute the policy and Y the action space.
The objective is to learn this policy π(), which allows the reproduction of the skill
taught by the expert. For this, the robot is presented with a demonstration (i.e.
training) dataset which consists of sample input-action pairs

D = {(xi,yi)}N
i=1 = (X ,Y ) (2)

where xi ∈ X , yi ∈ Y , N stands for the number of samples, and X ∈ Rdim(X )×N and
Y ∈ Rdim(Y)×N represent the matrices where all the column input and output vectors
are aggregated, respectively. From the formulation of the problem, we can see that
the first key aspect in LfD involves identifying the appropriate inputs and outputs
to the policy. Trajectories are the most popular choice since in a myriad of robotic
systems these govern the robot actions.

Another fundamental feature of LfD methods is the possibility of retrieving a
probabilistic representation of the policy. This allows a complete description of the
task, encoding the uncertainty along with the motion; which is crucial for reflect-
ing the importance of certain points of the task, leading to better generalization
capabilities.

Also, in LfD is interesting to adapt the learned motion to unseen scenarios while
maintaining the general trajectory shape as in the demonstrations without re-training
the model. Commonly, these requirements are expressed as via-point constraints or
the blending of multiple movement policies.

In this work, we present a general Gaussian-Process-based learning from demon-
stration approach. By exploiting the potential that Gaussian Process models offer, we
aim to unify in a single, entirely GP-based framework, the main features required for
a state-of-the-art LfD approach.



2 State-of-the-art
Over the past two decades, trajectory-based robot learning from demonstration has
been intensive field of study. Among the most relevant contributions, the following
methods can be highlighted: Dynamic Movement Primitives (DMP) (Ijspeert et al,
2001; Pastor et al, 2009; Saveriano et al, 2021), Probabilistic Movement Primitives
(ProMP) (Paraschos et al, 2018; Ewerton et al, 2019; Frank et al, 2021), Gaussian
Mixture Model-Gaussian Mixture Regression (GMM-GMR) (Calinon, 2016; Pignat
and Calinon, 2019; Pignat et al, 2022), Kernelized Movement Primitives (Huang et al,
2019; Huang et al, 2019), and Gaussian Processes (GP) (Nguyen-Tuong and Peters,
2008; Forte et al, 2010; Schneider and Ertel, 2010). These representations have
proved successful at learning and generalizing trajectories. However, each model
presents its strengths and shortcomings.

The main advantage of probabilistic-based methods (GMM-GMR, ProMP, KMP
and GP) is that they not only retrieve an estimate of the underlying trajectory across
multiple demonstrations, but also encode its variability by means of a covariance
matrix. This information, which can be inferred from the dispersion of the collected
data, can be exploited for the execution of the task, i.e., specifying the robot tracking
precision or switching the controller (Silvério et al, 2018).

Unlike probabilistic-based methods, at the cost of not encoding the variability of
the task, DMP only requires a single demonstration. Generalization is achieved by
assuming trajectories to be solutions of a deterministic dynamical system, achieving
remarkable success in generating smooth trajectories from an arbitrary initial state.
For capturing higher-order statistics, a unified framework fusing dynamic and prob-
abilistic movement primitives (ProDMPs) (Li et al, 2022), that recovered a linear
basis-function representation for the trajectories by solving the dynamical system,
has recently been proposed. However, a drawback of DMP, and also ProMP, is
that they rely on the manual specification of basis functions, which requires expert
knowledge and makes the learning problem with high-dimensional inputs almost
intractable. GMM-GMR, in contrast, has proven successful in handling this kind of
demonstrations. KMP and GP, by their kernel treatment, can be implemented for
manipulation tasks where high-dimensional inputs and outputs are required (Huang
et al, 2021).

In LfD is also interesting to transfer the learned motion to unseen scenarios while
maintaining the general trajectory shape as in the demonstrations. By exploiting the
properties of probability distributions, ProMP, KMP and GP allow for trajectory
adaptations with via-points. On the other hand, despite GMM-GMR being formulated
in terms of Gaussian distributions, the re-optimization of the learned policy requires
to re-estimate the model parameters, which lie in a high-dimensional space. This
makes the adaptation process very expensive, which prevents its use in unstructured
environments, where the policy adjustment is key.

Besides the generation of adaptive trajectories, another desired property in LfD
is extrapolation. In this regard, there is an interesting duality between GMM-GMR
and GP representations. The former covariance matrices, model the variability of
the trajectories. Conversely, the latter provide a measure of the prediction uncer-
tainty, the variance increasing with the absence of training data. This information is



relevant when trying to generalize the learned motion outside of the demonstrated
action space. The simultaneous exploitation of both measures is considered in KMP
(Silvério et al, 2019). Moreover, in a recent work, Jaquier et al. (Jaquier et al, 2019)
propose a a GMM-based GP for encoding the trajectory (GMR-GP), which is a
method with enough similarities with KMP, since both are kernel-based. GMR-GP
take advantage of the ability of GP to encode prior beliefs through the mean and ker-
nel functions and the capability of GMR to make predictions far from training data.
Nevertheless, the improvement with respect to GMR comes at the cost, in both KMP
and GMR-GP methods, of an increasing complexity with respect to GP representa-
tions. Further, the framework of GP and GMR-GP allows the representation of more
complex behaviors that KMP defining a prior for the process.

In the recent years, there has been a growing interest in Gaussian Processes
(Schulz et al, 2018). The main advantage of GP over the previously discussed meth-
ods, is their ability to encode prior beliefs through the mean and kernel functions.
This allows the representation of more complex behaviors in the regions of the action
space where demonstration data is sparse. The evaluation of GP models requires how-
ever major computational resources with respect to calculation and memory (Nelles,
2020). A few works have studied the use of an entirely GP-based representation in
the LfD context (Nguyen-Tuong and Peters, 2008; Forte et al, 2010). Among the
most representative is the one presented by presented by Schneider et al. (Schneider
and Ertel, 2010). They propose a representation of a pick-and-place task that effec-
tively encodes the task variability using a heteroscedastic GP. Similarly, Umlauft et
al. (Umlauft et al, 2017) estimate the prediction uncertainty separately, using Wishart
Processes. The learned trajectory is retrieved combining GP and DMP. Neither of
these works consider the adaptation of the learned policy. Other works formulate
the learning and motion planning problem within a single GP-based framework (Osa
et al, 2018; Rana et al, 2017). In these works the entire trajectory is retrieved from an
optimization perspective. However, this becomes inefficient as the length of the tra-
jectory and the dimensionality of the learning problem increase. Finally, in a recent
work, Wilcox et al. (Wilcox and Yip, 2020) apply GP regression for online non-
parametric Bayesian model learning for real-time robot control. However, they do
not focus in the trajectory learning problem, but on robot teleoperation.

A drawback of GP is that they are usually only defined in Euclidean space, even
though a formulation with non-Euclidean input space is possible in principle (Lang
et al, 2018). Thus, when it comes to the modeling of task space trajectories, represen-
tation of orientation imposes great challenges, since is accompanied with additional
constraints. This is an aspect disregarded in the aforementioned GP-based meth-
ods, which is critical in LfD. Some works have successfully addressed this question
with DMP (Koutras and Doulgeri, 2019; Abu-Dakka and Kyrki, 2020), GMM-GMR
(Zeestraten et al, 2017; Jaquier et al, 2021b) and KMP (Huang et al, 2019; Abu-
Dakka et al, 2021). However, in recents works, Lang et al. (Lang et al, 2015; Lang
and Hirche, 2017) and Jaquier el al. (Jaquier et al, 2021a) has proposed efficient GP
representations for 6-DoF rigid motions. We have adopted in our framework, due to
its greater simplicity, the approach developed by Lang et al. (Lang and Hirche, 2017).



Table 1 Comparison between the LfD state-of-the-art and our approach

DMP ProMP GMM-GMR GP KMP GMM-GP Our approach

High-dimensional Learning − − ✓ ✓ ✓ ✓ ✓

Via-point Adaptation − ✓ − − ✓ ✓ ✓

Task Variability − ✓ ✓ ✓ ✓ ✓ ✓

Prediction Uncertainty − − − ✓ ✓ ✓ ✓

Prior Information − − − ✓ − ✓ ✓

Task Space Rotations ✓ ✓ ✓ − ✓ − ✓

3 Structure and contributions of this paper
In this work, we present a general Gaussian-Process-based learning from demonstra-
tion approach. For the purpose of clear comparison, the main contributions of the
state-of- the-art and our approach are summarized in Table I.

We show how to achieve an effective representation of the manipulation skill,
inferred from the demonstrated trajectories. We unify both, the task variability and
the prediction uncertainty, in a single concept we refer to as task uncertainty in the
remainder of the paper. Furthermore, in order to achieve an effective generalization
across demonstrations, we propose the novel Task Completion Index, for tempo-
ral alignment of task trajectories. Finally, we address the adaptation of the policy
through via-points, and the modulation of the robot behavior depending on the task
uncertainty through variable admittance control.

The paper is structured as follows: in Section 4 we discuss the theoretical aspects
of the considered GP models; in Section 5 we present the proposed learning from
demonstration framework; in Section 6 we illustrate the main aspects of the paper
through a real-world application with the TIAGo robot; finally, in Section 7, we
summarize the final conclusions.

4 Gaussian Process Models
In this section we discuss the theoretical background of the proposed LfD approach.
First, we present the fundamentals of GP. Then, we address the challenges of mod-
eling rigid-body dynamics with them. Finally, we present how heteroscedastic GP
allows to accurately represent the uncertainty of the taught manipulation task.

4.1 Gaussian Process Fundamentals
Intuitively, one can think of a Gaussian process as defining a distribution over func-
tions, and inference taking place directly in the space of functions. Formally, GP are
a collection of random variables, any finite number of which have a joint Gaussian
distribution (Rasmussen and Williams, 2006). It can be completely specified by its
mean m(t) and covariance k(t, t ′) functions:

m(t) = E [ f (t)] (3)



k(t, t ′) = E
[
( f (t)−m(t))

(
f (t ′)−m(t ′)

)]
(4)

where f (t) is the underlying process, m(t) depicts the prior knowledge of its mean,
and k(t, t ′) is symmetric and positive semi-definite (usually referred to as kernel) that
must be specified. We are interested in incorporating the knowledge that the training
data D = {(ti,yi)}N

i=1 provides about f (t). We consider that we do not have available
direct observations, but only noisy versions y.

Let m(t) be the vector of the mean function evaluated at all training points t
and K(t, t∗) be the matrix of the covariances evaluated at all pairs of training and
prediction points t∗. Assuming additive independent identically distributed Gaussian
noise with variance σ2

n , we can write the joint distribution of the observed target
values y and the function values at the test locations f∗ under the prior as (Nelles,
2020): [

y
f∗

]
∼ N

([
m(t)

m(t∗)

]
,

[
K(t, t)+σ2

n I K(t, t∗)

K(t∗, t) K(t∗, t∗)

])
(5)

The posterior distribution over functions can be computed by conditioning the
joint Gaussian prior distribution on the observations p(f∗|t,y, t∗)∼N (µ∗,Σ∗) where
(Nelles, 2020):

µ∗ = m(t∗)+K(t∗, t)
[
K(t, t)+σ

2
n I
]−1

[y−m(t)] (6)

Σ∗ = K(t∗, t∗)−K(t∗, t)
[
K(t, t)+σ

2
n I
]−1

K(t, t∗) (7)

When we consider only the prediction of one output variable, k(t, t ′) is a scalar
function. The previous concepts can be extended to multiple-output GP (MOGP)
by taking a matrix covariance function k(t, t ′). Usual approaches to MOGP mod-
elling are mostly formulated around the Linear Model of Coregionalization (LMC)
(Alvarez et al, 2012). For a d-dimensional outptut the kernel is expressed in the
following form:

B⊗k(t, t ′) =


B11k11(t1, t ′1) . . . B1dk1d(t1, t ′d)

...
. . .

...
Bd1kd1(td , t ′1) . . . Bddkdd(td , t ′d)

 (8)

where B ∈ Rd×d is regarded as the coregionalization matrix and ti represents the
input corresponding to the i-th output. Diagonal elements correspond to the single-
output case, while the off-diagonal elements represent the prior assumption on the
covariance of two different output dimensions (Liu et al, 2018).

If no a-priori assumption is made, Bi j = 0 for i ̸= j and the MOGP is equivalent
to d independent GP. Regarding the form of k(t, t ′), typically kernel families have
free hyperparameters Θ. Such parameters can be determined by maximizing the log
marginal likelihood (Rasmussen and Williams, 2006):

log p(y|t,Θ) =−1
2

yT K−1
y y− 1

2
log |Ky|−

N
2

log2π (9)

where Ky = K(t, t)+σ2
n I. This problem might suffer from local optima.



4.2 Rigid-Body Motion Representation
In the LfD context, representation of trajectories in task space is usually required.
However, the modelling of rotations is not straightforward with GP, since the stan-
dard formulation is defined for an underlying Euclidean space. A common approach
is to use the Euler angles, and exploit that locally the rotation group SO(3) ≃ R3,
allowing distances to be computed as Euclidean. However, when this approximation
is no longer valid (e.g. at low sampling frequency or if collected data is sparse) it
might lead to inaccurate predictions. To overcome this issue, as proposed in (Lang
and Hirche, 2017), from the Euler’s fixed point theorem (Palais and Palais, 2007)
rotations can also be parametrizes by a set of unit length Euler axes u together with
a rotation angle θ :

SO(3)⊂
{

θu ∈ R3/∥u∥= 1∧θ ∈ [0,π]
}

(10)

This set defines the solid ball Bπ(0) in R3 with radius 0 ≤ r ≤ π which is closed,
dense and compact. Ambiguity in the representation occurs for θ = π . To obtain an
isomorphism between the rotation group SO(3) and the axis-angle representation, we
fix the axis representation for θ = π:

B̃π (0) = Bπ (0)\{πu/uz < 0 ∨
(
uz = 0∧uy < 0

)
∨
(
uz = uy = 0∧ux < 0

)
} (11)

where u = (ux,uy,uz). This parametrization is a minimal and unique SO(3)≃ B̃π(0).
Rigid motion dynamics is given by a mapping from time, to translation and rota-

tion h : R −→ SE(3). Let the translational components be defined by the Euclidean
vector v ∈ R3. Then SE(3) is defined isomorphically by SE(3)≃ R3 × B̃π(0). Thus,
rigid body motion can be represented in MOGP with the 6-dimensional output vector
structure (v,θu) = (x,y,z,θux,θuy,θuz).

Another possible, more accurate representation, can be achieved with dual quater-
nions (Lang et al, 2015). However, as shown in (Lang and Hirche, 2017), with the
proposed parametrization, a good performance is attained and computations are more
efficient.

4.3 Heteroscedastic Gaussian Process
The standard Gaussian Process model assumes a constant noise level. This can be
an important limitation when encoding a manipulation task. Consider the example
shown in Figure 2: it is evident that while the initial and final positions are highly
constrained, that is not the case for the path to follow between such positions. In
graphs a) and b) we can see that with a standard approach we accurately represent
the mean but not the variability of demonstrations.

Considering an independent normally distributed noise, λ ∼ N (0,r(t)), where
the variance is input-dependent and modeled by r(t). The mean and covariance of the
predictive distribution can be modified to (Goldberg et al, 1998):

µ∗ = m(t∗)+K(t∗, t) [K(t, t)+R(t)]−1 [y−m(t)] (12)



Fig. 2 Standard GP do not accurately model the variability of the demonstrated task as can be seen in a)
and b), where it is underestimated and overestimated, respectively. On the other hand, the heteroscedastic
GP approach, in c), encodes the variability in the different phases of the task, considering the local noise
in d).

Σ∗ = K(t∗, t∗)+R(t∗)−K(t∗, t) [K(t, t)+R(t)]−1 K(t, t∗) (13)
where R(t) is a diagonal matrix, with elements r(t).

Taking into account the input-dependent noise shown in Figure 2d) the variability
in the different phases of the manipulation task is effectively encoded in Figure 2c).
This approach is commonly referred to as heteroscedastic Gaussian Process. The
main limitation of this method is the trade-off between accuracy in the estimation
of the latent noise function, for which more demonstrations are preferred, and the
computational complexity of the learning algorithm.

5 Learning from Demonstration Framework
In this section, we present the proposed GP-based LfD framework. First, we for-
malize the problem of learning manipulation skills from demonstrated trajectories.
Then, we propose an approach for encoding the learned policy with GP. Next, we dis-
cuss the temporal alignment of demonstrations. We also present a method that allows
to adapt the learned policy through via-points. Finally, we study how the uncer-
tainty model of GP can be exploited to stably modulate the robot behavior, varying
end-effector virtual dynamics.



5.1 Problem Statement
In LfD we assume that a dataset of demonstrations is available. In the trajectory-
learning case, the dataset consists of a set of trajectories s together with a timestamp
t ∈ R, D = {(ti,si)}N

i=1.
Without loss of generality, we will consider si ∈ SE(3). The aim is to learn a

policy π that infers, for a given time, the desired end-effector pose sd
i to perform

the taught manipulation task: sd
i = π(ti). The policy must generate continuous and

smooth paths, and generalize over multiple demonstrations.

5.2 Manipulation Task Representation with GP
Representing a manipulation task using heteroscedastic GP models requires the spec-
ification of m(t), k(t, t ′) and r(t). As we have discussed in Section 4.2, a suitable
mapping for representing a trajectory is given by the following MOGP:

π(t)∼ GP (µ∗,Σ∗) : t −→ (x,y,z,θux,θuy,θuz) (14)

The prior mean function is commonly defined as m(t) = 0. Although not neces-
sary in general, if no prior knowledge is available this is a simplifying assumption.
The GP covariance function controls the policy function shape. The chosen kernel
must generate continuous and smooth paths. Note also that the time parametrization
of trajectories is invariant to translations in the time domain. Thus, the covariance
function must be stationary. That is, it should be a function of τ = t − t ′. The Radial
Basis Function (RBF) kernel fulfils all these requirements (Nelles, 2020):

k(t, t ′) = σ
2
f exp

(
− [t − t ′]2

2l2

)
(15)

with hyperparameters l and σ f .
Moreover, for multidimensional outputs, we have to consider the prior interac-

tion. In the general case, we usually do not have any previous knowledge about
how the different components of the demonstrated trajectories relate to each other.
Thus, we can assume that the six components are independent a-priori. The matrix
covariance function can then be written as (Nelles, 2020):

k(t, t ′) = diag
(

σ
2
f 1e

(
[t−t ′]

2
/l2

1

)
, . . . ,σ2

f 6e
(
[t−t ′]

2
/l2

6

))
(16)

where diag() refers to diagonal, and li and σ f i correspond to output dimension i.
In Section 4.3 we discussed the convenience of specifying an input-dependent

noise function r(t) for encoding the manipulation skill with GP. Usually, it is not
known a-priori and must be inferred from the demonstrations. As proposed in (Ker-
sting et al, 2007), first an standard GP can be fit to the data. Its predictions can be
used to estimate the input-dependent noise empirically. Then, a second independent
GP can be used to model z(t) = log [r(t)]. Let Z be the set of noise data z = {zi}n

i=1
and its predictions z∗. The posterior predictive distribution can be approximated by:



p(f∗|D, t∗) =
∫∫

p(f∗|D,Z, t∗) p(Z|D, t∗)≃ p(f∗|D,Z, t∗) (17)

where

Z = argmax
z,z∗

p(z,z∗|D, t∗) (18)

At this point we have specified all the required functions of the model.

5.3 Temporal Alignment of Demonstrations
For inferring a time dependent policy, the correlation between the temporal and spa-
tial coordinates of two demonstrations of the same task must remain constant. In
general, it is very difficult for a human to repeat them at the same velocity. Thus,
a time distortion appears (Figure 3a), and should be adequately corrected. Dynamic
Time Warping (DTW) (Senin, 2008) is a well-known algorithm for finding the
optimal match between two temporal sequences, which may vary in speed.

The algorithm finds a non-linear mapping of the demonstrated trajectories and a
reference based on a similarity measure. A common measure in the LfD context is
the Euclidean distance. This relies on the assumption that the manipulation task can
be performed always following the same path. For instance, consider the case of a
pick-and-place task where the objects have to be placed in shelves at different levels
(Figure 3).

Using the Euclidean distance as similarity measure will lead to an erroneous tem-
poral alignment (Figure 3b), since intermediate points for placing the object at a
higher level can be mapped to ending points of a lower level. We propose to use an
index which considers the portion of the trajectory that has been covered for task
completion as a similarity measure. We will refer to it as the Task Completion Index
(TCI). We define it in discrete form as:

ζ (tk) =
∑

k
j=1 d(s j,s j−1)

∑
M
j=1 d(s j,s j−1)

∀ k = 1, . . .M (19)

where s j ∈ SE(3) refers to the trajectory point at time instant t j, d(,) to an scalar
distance function and M to the total number of discrete points. Note that 0 =
ζ (t0)≤ ζ (tk)≤ ζ (tM) = 1. As a distance function on SE(3), using the representation
discussed in Section 4.2, we define:

d(si,s j) =

√
ω1 [darc(θiui,θ ju j)]

2 +ω2∥vi −v j∥2 (20)
where ωk are a convex combination of weights for application dependent scaling and
darc(,) is the length of the geodesic between rotations (Lang and Hirche, 2017):

darc(θiui,θ ju j) = 2arccos
∣∣∣∣cos

θi

2
cos

θ j

2
+ sin

θi

2
sin

θ j

2
uT

i u j

∣∣∣∣ (21)

In Figure 3c we show that the trajectories are warped correctly, allowing then an
effective encoding of the manipulation task, with the proposed TCI (Figure 3d).



Fig. 3 In a) we observe that due to distortion in time, task constraints are not encoded correctly. In b) the
trajectories are aligned with DTW using the Euclidean distance as similarity measure. In c) we show the
resulting alignment using the proposed TCI d), as similarity measure.

5.4 Policy Adaptation through Via-points
The modulation of the learned policy through via-points is an important property to
adapt to new situations. Let V = {(ti,sv

i )} be the set of via-points sv
i which are desired

to be reached by the policy at time instant ti. In the proposed probabilistic framework,
generalization can be implemented by conditioning the policy on both D and V .
Assuming that the predictive distribution of each set can be computed independently,
the conditioned policy is (Deisenroth and Ng, 2015):

p(f∗|D,V, t∗) = p(f∗|D, t∗) p(f∗|V, t∗) (22)

If p(f∗|D, t∗) ∼ N
(
µd ,Σd

)
and p(f∗|V, t∗) ∼ N (µv,Σv), then, it holds that

p(f∗|D,V, t∗)∼ N (µ∗∗,Σ∗∗), where:

µ
∗∗ = Σ

v
(

Σ
d +Σ

v
)−1

µ
d +Σ

d
(

Σ
d +Σ

v
)−1

µ
v (23)

Σ
∗∗ = Σ

d
(

Σ
d +Σ

v
)−1

Σ
v (24)



Fig. 4 On the left, a GP model based on the demonstrated trajectories. On the right, the policy adapted
through via-points.

The resulting distribution is computed as a product of Gaussians, and is a compro-
mise between the via-point constraints and the demonstrated trajectories, weighted
inversely by their variances.

Considering an heteroscedastic GP model for V (equations 12 and 13), the
strength of the via-point constraints can then be easily specified by means of the
latent noise function. For instance, via-points with low noise will have a higher rela-
tive weight, modifying significantly the learned policy. On the other hand, via-points
with a high noise level will produce a more subtle effect. In Figure 4 we illustrate
how the distribution adapts to strong and weak defined via-points.

It should be remarked that the posterior predictive distribution of D only needs to
be computed once. Thus, adaptation of the policy just involves a computational cost
of O

(
m3
)
, where m is the number of predicted outputs. Since m can be specified,

the proposed approach is suitable for on-line applications (for further insight on GP
complexity see (Bilj, 2018)).

5.5 Modulation of the Robot Behavior
In LfD is often convenient to adapt the behavior of the robot as a function of
the uncertainty in the different phases of the task (Suomalainen et al, 2022). Let
the robot end-effector be controlled through a spring-mass-damper model dynamics
(Abu-Dakka and Saveriano, 2020):

M(t)
..e(t)+D(t)

.e(t)+Kp (t)e(t) = Fext (t) (25)

where M(t) ,D(t) ,Kp (t) ∈ R6×6 refer to inertia, damping and stiffness, respec-
tively, and e(t) ∈ R6×1 is the tracking error, when subjected to an external force



Fext (t) ∈ R6×1. It can be proved (see (Kronander and Billard, 2016)) that for a con-
stant, symmetric, positive definite M, and D(t), Kp (t) continuously differentiable,
the system is globally asymptotically stable if there exists a γ > 0 such that:

1. γ M−D(t) is negative semidefinite
2.

.
Kp (t)+ γ

.
D(t)−2γ Kp (t) is negative definite

Without loss of generality, we can assume that M, D(t), and Kp (t) are diagonal
matrices, since they can always be expressed in a suitable reference frame. There-
fore, the system can be uncoupled in six independent scalar systems. Now consider a
constant damping ratio δ . Substituting d (t) = 2δ

√
mkp (t) - where m, d (t) and kp(t)

are an arbitrary diagonal element of M, D(t) and Kp (t), respectively - on the second
stability condition, it yields the following upper bound for the stiffness derivative:

.
kp (t)<

2γ

√
kp (t)

3√
kp (t)+2δ γ

√
m

(26)

In order to modulate the robot behavior, we propose the following variable
stiffness profile:

kp(t) = kmax
p −

kmax
p − kmin

p

1+ e−α(σ(t)−β )
(27)

which increases the stiffness inversely to the uncertainty σ(t) and saturates at kmin
p

and kmax
p for high and low values respectively. Also, note that higher values of the

design parameter α give a faster transition between stiff and compliant robot behav-
ior, while β determines a threshold value of σ(t) at which the transition starts.
Differentiating we have:

.
kp(t) = αkp(t)

(
1−

kp(t)
kmax

p − kmin
p

)
dσ(t)

dt
(28)

For a constant dσ(t)/dt, the maximum value of the stiffness derivative
.
kp(t)

is obtained for kp(t) =
(
kmax

p − kmin
p
)
/2. Thus, substituting in (28), it yields the

following upper bound:

.
kp(t)≤

α

4
(
kmax

p − kmin
p
) dσ(t)

dt
(29)

Then, from inspection of the first stability condition, we can see that γ defines a
lower bound for the minimum allowed damping d(t).

Given the variable stiffness profile in Equation 27, and assuming constant damp-
ing ratio, the most restrictive value is γ = 2δ

√
kmin

p /m. Substituting in (26), we can



Fig. 5 Demonstrations were recorded using an Xsens MVN motion capture system. The teacher opens
three doors with different radius.

obtain the following lower bound:

.
kp(t)<

4δ

√(
kmin

p
)3

(1+4δ 2)
√

m
≤

2γ

√
kp (t)

3√
kp (t)+2δ γ

√
m

(30)

Then, from equations (29) and (30) the following sufficient stability condition
can be derived:

dσ(t)
dt

<
16δ

α

√(
kmin

p
)3(

kmax
p − kmin

p
)
(1+4δ 2)

√
m

(31)

The control parameters can then be tuned to ensure the satisfaction of this inequal-
ity. Note that sharper uncertainty profiles σ(t) are more restrictive with respect
to variations of the stiffness. For instance, stability is favored by a smaller range(
kmax

p − kmin
p
)

or lower values of α , i.e. slower transition between stiff and compliant
behaviors. For the limit cases kmax

p −→ kmin
p and α −→ 0, that is, constant stiffness,

stability can be achieved regardless of σ(t). It can also be observed, since the right-
hand side of the inequality is always positive, that with the proposed variable stiffness
profile, stability is ensured if the uncertainty decreases.

6 An Example Application: Door Opening Task
In order to test the proposed GP-based LfD approach, we applied it to the real-world
task of opening doors using a TIAGo robot. This is a relevant skill for robots operat-
ing in domestic environments (Kim et al, 2004), since they need to open doors when
navigating, to pick up objects in fetch-and-carry applications or assist people in their
mobility.

6.1 Policy Inference from Human Demonstrations
We performed human demonstrations using an Xsens MVN motion capture system.
Right hand trajectories of the human teacher relative to the initial closed door position
were recorded for three different doors (Figure 5).



Fig. 6 Right-hand trajectories demonstrations dataset.

Fig. 7 Inference of the door opening policy from human demonstrations. The outputs are the position,
defined by (x,z), and the orientation defined by θuz taking the axis-angle representation. On the left col-
umn, we have the demonstrations of the door opening motion. On the middle column, the trajectories
temporally aligned. On the right column, the inferred Gaussian Process policy, where the dark and light
shaded area correspond to the 63% and 95% confidence intervals.



Fig. 8 Door opening policy projected on the x− z plane.

Coordinate axes were chosen such as the pulling direction is parallel to the x axis
and the y axis is perpendicular to the floor. The demonstration dataset consisted in a
total of 6 trajectories, two per each door (Figure 6).

The main steps of the learning process of the door opening policy are illustrated
in Figure 7. The rotation component is encoded using the axis-angle representation.
The demonstrated trajectories are aligned with the Dynamic Time Warping algo-
rithm using the task completion index. We can see that the trajectories are warped
effectively since they are clearly clustered in three different groups, one for each
type of door. Once the trajectories are aligned, we infer the task policy training a
heteroscedastic Gaussian Process model on the demonstration data.

We can observe that the model effectively captures the door opening skill. This
is more clear in Figure 8, where the task uncertainty has been projected onto the x-z
plane. In this case, the variability in the task comes from the uncertainty in the radius
of the door, which is reflected in the resulting policy.

6.2 Policy Adaptation and Modulation of the Robot Behavior
During the execution of the task, we can exploit the observations of the motion of
the door which is currently being opened to adapt the learned policy. Specifically,
we can gather these data by solving the forward kinematics of the robot, and use
it to define a set of via-point constraints. By updating this set at each time step we



Fig. 9 (a) Evolution of the posterior predictive distribution considering as via-points the observations
of the door motion in the light-blue shaded area. (b) The first row shows the comparison between the
predictive distribution considering the adaptive policy or the policy based only on human demonstrations.
In the second row we can see the mean squared prediction error (32) of each policy.

can adapt the motion online to the current task requirements. In order to evaluate
quantitatively the performance of the adaptive policy against the one based solely on
the demonstrations, we use the mean squared prediction error (MSPE). Assuming
that there exists a ground truth policy π̃(), which is the case when opening a door,
the MSPE summarizes the predictive ability of the model. Ideally, this value should
be close to zero:

MSPE =
[
ε

2]= (E [π(t)]− π̃(t))2 +V [π(t)] (32)
where E[] and V [] refer to the expectancy and the variance, respectively. The evolu-
tion of the adaptive policy and the MSPE during the execution of the door opening
motion is shown in Figure 9.

We can see that by conditioning on the current observations of the door we are
able to reduce the task uncertainty in the near future, converging also the mean to the
ground truth. This translates into better performance in terms of the MSPE, as we
can see in Figure 9b). It is reduced by almost two orders of magnitude in the final



Fig. 10 TIAGo robot opening the door.

Fig. 11 On top, variable stiffness profile for x and z. Below, the evolution of the uncertainty derivative of
the adaptive policy.

stages of the task. With the proposed approach we are able to successfully open the
door (Figure 10).

The resulting variable stiffness profile is shown in Figure 11. We have tuned the
parameters empirically, being the used values kmax

p = 500, kmin
p = 100, m = 1, δ = 1,

α = 600 and β = 0.01. For simplicity, we have considered the same law for the 6
degrees of freedom. We can observe that the robot behavior is modulated towards a
more compliant behavior towards the final phases, where the policy is more uncertain.
We can also see that the stability bound is not crossed, which is coherent with the
behavior observed in the conducted experiments, where no instabilities occurred.

7 Conclusions
We propose an heteroscedastic multi-output GP policy representation, inferred from
demonstrations.



This model considers a suitable parametrization of task space rotations for GP
and ensures that only continuous and smooth paths are generated. The introduction of
an input-dependent latent noise function allows an effective simultaneous encoding
of the prediction uncertainty and the variability of demonstrated trajectories.

In order to establish a correlation between temporal and spatial coordinates,
demonstrations must be aligned. We introduce the novel Task Completion Index, a
similarity measure that allows to achieve an effective warping when the learned task
requires the consideration of different paths.

Adaptation of the policy can be performed by conditioning it on a set of specified
via-points. We also introduce a novel computationally efficient method, where the rel-
ative importance of the constraints can also be defined. Additionally, we propose an
innovative variable stiffness profile that takes advantage of the uncertainty measure
provided by the GP model to stably modulate the robot end-effector dynamics.

We applied the proposed learning from demonstration framework to the door
opening task and evaluated the performance of the learned policy through real-world
experiments with the TIAGo robot. Results show that the manipulation skill is effec-
tively encoded and a successful reproduction can be achieved by taking advantage of
the policy adaptation and robot behavior modulation approaches.

In future works we intend to improve the scalability of the learning algorithm by
exploiting the structure of replications, and the adaptability of the model by incorpo-
rating task variables. This would allow us to apply our method for learning complex
robot skills, such as cloth manipulation.
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Silvério J, Huang Y, Abu-Dakka F, et al (2019) Uncertainty-aware imitation learn-
ing using Kernelized Movement Primitives. In: IEEE International Conference on
Intelligent Robots and Systems (IROS), pp 90–97

Suomalainen M, Karayiannidis Y, Kyrki V (2022) A survey of robot manipulation in
contact. Robotics and Autonomous Systems 156:104,224

Torras C (2016) Service Robots for Citizens of the Future. European Review
24(1):17–30

Umlauft J, Fanger Y, Hirche S (2017) Bayesian uncertainty modeling for pro-
gramming by demonstration. In: IEEE International Conference on Robotics and
Automation (ICRA), pp 6428–6434

Wilcox B, Yip MC (2020) Sparse Online Locally Adaptive Regression Using Gaus-
sian Processes for Bayesian Robot Model Learning and Control. IEEE Robotics
and Automation Letters 5(2):2832–2839
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